Contents

Introduction

Getting started with ALGLIB

FAQ

AP library description

ALGLIB reference manual

Introduction

Sections

ALGLIB license

ALGLIB is a free software which is distributed under a GPL license - version 2 or (at your option) any later version. A copy of the GNU General Public License is available at http://www.fsf.org/licensing/licenses

Documentation license

This reference manual is licensed under BSD-like documentation license:

Copyright 1994-2009 Sergey Bochkanov, ALGLIB Project. All rights reserved.

Redistribution and use of this document (ALGLIB Reference Manual) with or without modification, are permitted provided that such redistributions will retain the above copyright notice, this condition and the following disclaimer as the first (or last) lines of this file.

THIS DOCUMENTATION IS PROVIDED BY THE ALGLIB PROJECT "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE ALGLIB PROJECT BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Reference Manual and User Guide

ALGLIB Project provides two sources of information: ALGLIB Reference Manual (this document) and ALGLIB User Guide.

ALGLIB Reference Manual contains full description of all publicly accessible ALGLIB units accompanied with examples. Reference Manual is focused on the source code: it documents units, functions, structures and so on. If you want to know what unit YYY can do or what subroutines unit ZZZ contains Reference Manual is a place to go. Free software needs free documentation - that's why ALGLIB Reference Manual is licensed under BSD-like documentation license.

Additionally to the Reference Manual we provide you User Guide. User Guide is focused on more general questions: how fast ALGLIB is? how reliable it is? what are the strong and weak sides of the algorithms used? We aim to make ALGLIB User Guide an important source of information both about ALGLIB and numerical analysis algorithms in general. We want it to be a book about algorithms, not just software documentation. And we want it to be unique - that's why ALGLIB User Guide is distributed under less-permissive personal-use-only license.

Acknowledgements

ALGLIB was not possible without the contribution of next open source projects:

Getting started with ALGLIB

Sections

Testing ALGLIB

ALGLIB has a script-based testing system. 'Script-based' means that you don't have to use make to compile ALGLIB. ALGLIB distribution contains Bash scripts and BAT-files (for Windows users) which will test ALGLIB for you. Each script is provided in two identical versions: as a Bash script and as a Windows batch file.

If you are *nix user, your environment is ready for the testing. If you are Windows user, make sure that your FreePascal compiler is in your PATH.

check.batshort help
check.bat fpc allall the library is tested
check.bat fpc all_silentsilent mode, only errors are echo'ed
./check fpc fftfft.pas is tested
./check fpc fft "-Cr -Ct"    custom parameters are passed

Executing examples

Some units are accompanied by examples which can be executed by you. Example sources are stored in ./examples directory. They can be modified - feel free to experiment with them.

example.bat list autogklist examples for autogk.cpp unit
example.bat view autogk_smoothview example source
./example fpc autogk_smoothexecute example
./example fpc autogk_smooth "-m32 -O3"    custom parameters are passed

FAQ

Sections

Why is while cycle used instead of the for cycle?

The reason for that is some peculiarities of the for cycle in FreePascal. If the cycle has not been executed yet, in many programming languages the control variable of the cycle contains the initial value. In FreePascal, if the cycle has not been executed, the control variable of the cycle doesn't change. Once I have seen a source code, in which this difference played a major role. That's why decided to replace the for cycle in FreePascal with while cycle, whose behavior is the same as in any other language.

What is the purpose of the DynamicArrayCopy function?

In FreePascal dynamic arrays are reference types, i.e. if the array parameter is passed by value, no copying of the array occurs. To emulate the transfer of the array parameter by value we use the DynamicArrayCopy function. It requires a dynamic array as an argument and returns a copy of this array. Assignment of the type A:=DynamicArrayCopy(A) replaces the reference to the original array with a reference to its copy.

What is the AP library?

AP library is a generic name for a set of libraries in several programming languages performing low-level tasks depending on specific programming languages. The AP library carries out tasks such as working with dynamic one- and multidimensional arrays in languages which do not support this data type, contains implementation of basic linear algebra algorithms, etc. The library is distributed as source codes under GPL 2+ license (GPL 2 or later). The library is attached to the ALGLIB package.

Why do some algorithms (for instance, optimization methods) use reverse communication instead of function pointers, delegates and other means of my programming language?

Optimization, integration and other similar methods are united by one common trait. They need to have a way of calculating the meaning of a function defined by the user at a point defined by the method.

The most convenient way of solving this problem is transferring a function pointer into the module. However bear in mind that ALGLIB package is written using pseudocode that is automatically translated into different programming languages. While each language has its own function pointer analog that is often different from other languages. When the ALGLIB pseudocode was developed, at some point is became clear that adding function pointers in it will be very complex as this feature is implemented differently in every language. This is why reverse communication was chosen as a different kind of solution.

What is ALGLIB aimed at?

It is aimed at creating a convenient and efficient multilingual scientific software library.

What is the difference between ALGLIB and other similar projects?

The ALGLIB package:

What is AlgoPascal?

AlgoPascal is a programming language, designed particularly for this project. The programs, written in this language, are processed by an automatic translator and translated into other programming languages. Almost all ALGLIB source is produced by the AlgoPascal translator.

AP library description

Sections

Introduction

The document describes a Pascal version of the AP library. The AP library for Pascal contains a basic set of mathematical functions and classes needed to compile ALGLIB package. The library includes the only module ap.pas.

Constants

MachineEpsilon
The constant represents the accuracy of machine operations times some small number r>1.

MaxRealNumber
The constant represents the highest value of the positive real number, which could be represented on this machine. The constant may be taken "oversized", that is real boundary can be even higher.

MinRealNumber
The constant represents the lowest value of positive real number, which could be represented on this machine. The constant may be taken "oversized", that is real boundary can be even lower.

Functions

function AbsReal(X : Extended):Extended;
Returns absolute value of a real number. This function is equivalent to the standard Abs function.

function AbsInt (I : Integer):Integer;
Returns absolute value of an integer. This function is equivalent to the standard Abs function.

function RandomReal():Extended;
Returns a random real number from half-interval [0,1).

function RandomInteger(I : Integer):Integer;
Returns a random integer between 0 and I-1.

function Sign(X:Extended):Integer;
Returns:
+1, if X>0
-1, if X<0
0, if X=0.

function DynamicArrayCopy(const A: TInteger1DArray):TInteger1DArray;overload;
function DynamicArrayCopy(const A: TReal1DArray):TReal1DArray;overload;
function DynamicArrayCopy(const A: TComplex1DArray):TComplex1DArray;overload;
function DynamicArrayCopy(const A: TBoolean1DArray):TBoolean1DArray;overload;
function DynamicArrayCopy(const A: TInteger2DArray):TInteger2DArray;overload;
function DynamicArrayCopy(const A: TReal2DArray):TReal2DArray;overload;
function DynamicArrayCopy(const A: TComplex2DArray):TComplex2DArray;overload;
function DynamicArrayCopy(const A: TBoolean2DArray):TBoolean2DArray;overload;

This function set is used to to make copies of one- and two-dimensional arrays.

Arrays

The following types of dynamic arrays are defined in standard AP library:

type
    TInteger1DArray     = array of LongInt;
    TReal1DArray        = array of Double;
    TComplex1DArray     = array of Complex;
    TBoolean1DArray     = array of Boolean;

    TInteger2DArray     = array of array of LongInt;
    TReal2DArray        = array of array of Double;
    TComplex2DArray     = array of array of Complex;
    TBoolean2DArray     = array of array of Boolean;

Complex numbers operations

As there is no operator overloading in Object Pascal (and it is often subjected to criticism from C++ adepts), operations with complex numbers could not be implemented as easy as with built-in data type. Therefore Complex data type is defined in a library. It is a record with two real number fields x and y, and all the operations are performed with the use of special functions implementing addition, multiplication, subtraction and division. An input can be complex or real, and output is complex. These functions are listed below.

function C_Add(const Z1 : Complex; const Z2 : Complex):Complex;
function C_AddR(const Z1 : Complex; const R : Double):Complex;

Calculate Z1+Z2 or Z1+R.

function C_Sub(const Z1 : Complex; const Z2 : Complex):Complex;
function C_SubR(const Z1 : Complex; const R : Double):Complex;
function C_RSub(const R : Double; const Z1 : Complex):Complex;

Calculate Z1-Z2, Z1-R or R-Z1.

function C_Mul(const Z1 : Complex; const Z2 : Complex):Complex;
function C_MulR(const Z1 : Complex; const R : Double):Complex;

Calculate Z1*Z2 or Z1*R.

function C_Div(const Z1 : Complex; const Z2 : Complex):Complex;
function C_DivR(const Z1 : Complex; const R : Double):Complex;
function C_RDiv(const R : Double; const Z2 : Complex):Complex;

Calculate Z1/Z2, Z1/R or R/Z2.

function C_Equal(const Z1 : Complex; const Z2 : Complex):Boolean;
function C_EqualR(const Z1 : Complex; const R : Double):Boolean;
function C_NotEqual(const Z1 : Complex; const Z2 : Complex):Boolean;
function C_NotEqualR(const Z1 : Complex; const R : Double):Boolean;

Compare Z1 and Z2 or Z1 and R.

function C_Complex(const X : Double):Complex;
Converts a real number into equal complex number.

function C_Opposite(const Z : Complex):Complex;
Returns -Z.

function AbsComplex(const Z : Complex):Double;
Returns the modulus of complex number z. Modulus calculation is performed using so called "safe" algorithm, that could never cause overflow when calculating intermediate results.

function Conj(const Z : Complex):Complex;
Returns complex conjugate to z.

function CSqr(const Z : Complex):Complex;
Returns the square of z.

ALGLIB reference manual

Packages and units

DataAnalysis package
dforest Decision forest classifier (regression model)
kmeans K-means++ clustering
lda Linear discriminant analysis
linreg Linear models
logit Logit models
mlpbase Basic neural network operations
mlpe Neural network ensemble models
mlptrain Neural network training
pca Principal component analysis
 
DiffEquations package
odesolver Ordinary differential equation solver
 
FastTransforms package
conv Fast real/complex convolution
corr Fast real/complex cross-correlation
fft Real/complex FFT
fht Real Fast Hartley Transform
 
Integration package
autogk Adaptive 1-dimensional integration
gkq Gauss-Kronrod quadrature generator
gq Gaussian quadrature generator
 
Interpolation package
idwint Inverse distance weighting: interpolation/fitting
lsfit Linear and nonlinear least-squares solvers
polint Polynomial interpolation/fitting
pspline Parametric spline interpolation
ratint Rational interpolation/fitting
spline1d 1D spline interpolation/fitting
spline2d 2D spline interpolation
 
LinAlg package
ablas Level 2 and Level 3 BLAS operations
bdsvd Bidiagonal SVD
evd Eigensolvers
inverseupdate Sherman-Morrison update of the inverse matrix
ldlt LDLT decomposition
matdet Determinant calculation
matgen Random matrix generation
matinv Matrix inverse
ortfac Real/complex QR, LQ, bi(tri)diagonal, Hessenberg decompositions
rcond Condition number estimate
schur Schur decomposition
sdet Determinant of a symmetric matrix
sinverse Symmetric inversion
spdgevd Generalized symmetric eigensolver
srcond Condition number estimate for symmetric matrices
svd Singular value decomposition
trfac LU and Cholesky decompositions
 
Optimization package
minasa ASA bound constrained optimizer
mincg Conjugate gradient optimizer
minlbfgs Limited memory BFGS optimizer
minlm Improved Levenberg-Marquardt optimizer
 
Other package
nearestneighbor Nearest neighbor search: approximate and exact
 
Solvers package
densesolver Dense linear system solver
ssolve Symmetric dense linear system solver
 
SpecialFunctions package
airyf Airy functions
bessel Bessel functions
betaf Beta function
chebyshev Chebyshev polynomials
dawson Dawson integral
elliptic Elliptic integrals
expintegrals Exponential integrals
fresnel Fresnel integrals
gammafunc Gamma function
hermite Hermite polynomials
ibetaf Incomplete beta function
igammaf Incomplete gamma function
jacobianelliptic Jacobian elliptic functions
laguerre Laguerre polynomials
legendre Legendre polynomials
psif Psi function
trigintegrals Trigonometric integrals
 
Statistics package
binomialdistr Binomial distribution
chisquaredistr Chi-Square distribution
correlation Pearson/Spearman correlation coefficients
correlationtests Hypothesis testing: correlation tests
descriptivestatistics Descriptive statistics: mean, variance, etc.
fdistr F-distribution
hqrnd High quality random numbers generator
jarquebera Hypothesis testing: Jarque-Bera test
mannwhitneyu Hypothesis testing: Mann-Whitney-U test
normaldistr Normal distribution
poissondistr Poisson distribution
stest Hypothesis testing: sign test
studenttdistr Student's t-distribution
studentttests Hypothesis testing: Student's t-test
variancetests Hypothesis testing: F-test and one-sample variance test
wsr Hypothesis testing: Wilcoxon signed rank test
 

ablas unit

Subroutines

ablasblocksize
ablascomplexblocksize
ablascomplexsplitlength
ablasmicroblocksize
ablassplitlength
cmatrixcopy
cmatrixgemm
cmatrixlefttrsm
cmatrixmv
cmatrixrank1
cmatrixrighttrsm
cmatrixsyrk
cmatrixtranspose
rmatrixcopy
rmatrixgemm
rmatrixlefttrsm
rmatrixmv
rmatrixrank1
rmatrixrighttrsm
rmatrixsyrk
rmatrixtranspose

ablasblocksize subroutine

(************************************************************************* Returns block size - subdivision size where cache-oblivious soubroutines switch to the optimized kernel. INPUT PARAMETERS A - real matrix, is passed to ensure that we didn't split complex matrix using real splitting subroutine. matrix itself is not changed. -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
function ABLASBlockSize(const A : TReal2DArray):AlglibInteger;

ablascomplexblocksize subroutine

(************************************************************************* Block size for complex subroutines. -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
function ABLASComplexBlockSize(const A : TComplex2DArray):AlglibInteger;

ablascomplexsplitlength subroutine

(************************************************************************* Complex ABLASSplitLength -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
procedure ABLASComplexSplitLength(const A : TComplex2DArray; N : AlglibInteger; var N1 : AlglibInteger; var N2 : AlglibInteger);

ablasmicroblocksize subroutine

(************************************************************************* Microblock size -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
function ABLASMicroBlockSize():AlglibInteger;

ablassplitlength subroutine

(************************************************************************* Splits matrix length in two parts, left part should match ABLAS block size INPUT PARAMETERS A - real matrix, is passed to ensure that we didn't split complex matrix using real splitting subroutine. matrix itself is not changed. N - length, N>0 OUTPUT PARAMETERS N1 - length N2 - length N1+N2=N, N1>=N2, N2 may be zero -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
procedure ABLASSplitLength(const A : TReal2DArray; N : AlglibInteger; var N1 : AlglibInteger; var N2 : AlglibInteger);

cmatrixcopy subroutine

(************************************************************************* Copy Input parameters: M - number of rows N - number of columns A - source matrix, MxN submatrix is copied and transposed IA - submatrix offset (row index) JA - submatrix offset (column index) B - destination matrix IB - submatrix offset (row index) JB - submatrix offset (column index) *************************************************************************)
procedure CMatrixCopy(M : AlglibInteger; N : AlglibInteger; const A : TComplex2DArray; IA : AlglibInteger; JA : AlglibInteger; var B : TComplex2DArray; IB : AlglibInteger; JB : AlglibInteger);

cmatrixgemm subroutine

(************************************************************************* This subroutine calculates C = alpha*op1(A)*op2(B) +beta*C where: * C is MxN general matrix * op1(A) is MxK matrix * op2(B) is KxN matrix * "op" may be identity transformation, transposition, conjugate transposition Additional info: * cache-oblivious algorithm is used. * multiplication result replaces C. If Beta=0, C elements are not used in calculations (not multiplied by zero - just not referenced) * if Alpha=0, A is not used (not multiplied by zero - just not referenced) * if both Beta and Alpha are zero, C is filled by zeros. INPUT PARAMETERS N - matrix size, N>0 M - matrix size, N>0 K - matrix size, K>0 Alpha - coefficient A - matrix IA - submatrix offset JA - submatrix offset OpTypeA - transformation type: * 0 - no transformation * 1 - transposition * 2 - conjugate transposition B - matrix IB - submatrix offset JB - submatrix offset OpTypeB - transformation type: * 0 - no transformation * 1 - transposition * 2 - conjugate transposition Beta - coefficient C - matrix IC - submatrix offset JC - submatrix offset -- ALGLIB routine -- 16.12.2009 Bochkanov Sergey *************************************************************************)
procedure CMatrixGEMM(M : AlglibInteger; N : AlglibInteger; K : AlglibInteger; Alpha : Complex; const A : TComplex2DArray; IA : AlglibInteger; JA : AlglibInteger; OpTypeA : AlglibInteger; const B : TComplex2DArray; IB : AlglibInteger; JB : AlglibInteger; OpTypeB : AlglibInteger; Beta : Complex; var C : TComplex2DArray; IC : AlglibInteger; JC : AlglibInteger);

cmatrixlefttrsm subroutine

(************************************************************************* This subroutine calculates op(A^-1)*X where: * X is MxN general matrix * A is MxM upper/lower triangular/unitriangular matrix * "op" may be identity transformation, transposition, conjugate transposition Multiplication result replaces X. Cache-oblivious algorithm is used. INPUT PARAMETERS N - matrix size, N>=0 M - matrix size, N>=0 A - matrix, actial matrix is stored in A[I1:I1+M-1,J1:J1+M-1] I1 - submatrix offset J1 - submatrix offset IsUpper - whether matrix is upper triangular IsUnit - whether matrix is unitriangular OpType - transformation type: * 0 - no transformation * 1 - transposition * 2 - conjugate transposition C - matrix, actial matrix is stored in C[I2:I2+M-1,J2:J2+N-1] I2 - submatrix offset J2 - submatrix offset -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
procedure CMatrixLeftTRSM(M : AlglibInteger; N : AlglibInteger; const A : TComplex2DArray; I1 : AlglibInteger; J1 : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean; OpType : AlglibInteger; var X : TComplex2DArray; I2 : AlglibInteger; J2 : AlglibInteger);

cmatrixmv subroutine

(************************************************************************* Matrix-vector product: y := op(A)*x INPUT PARAMETERS: M - number of rows of op(A) M>=0 N - number of columns of op(A) N>=0 A - target matrix IA - submatrix offset (row index) JA - submatrix offset (column index) OpA - operation type: * OpA=0 => op(A) = A * OpA=1 => op(A) = A^T * OpA=2 => op(A) = A^H X - input vector IX - subvector offset IY - subvector offset OUTPUT PARAMETERS: Y - vector which stores result if M=0, then subroutine does nothing. if N=0, Y is filled by zeros. -- ALGLIB routine -- 28.01.2010 Bochkanov Sergey *************************************************************************)
procedure CMatrixMV(M : AlglibInteger; N : AlglibInteger; var A : TComplex2DArray; IA : AlglibInteger; JA : AlglibInteger; OpA : AlglibInteger; var X : TComplex1DArray; IX : AlglibInteger; var Y : TComplex1DArray; IY : AlglibInteger);

cmatrixrank1 subroutine

(************************************************************************* Rank-1 correction: A := A + u*v' INPUT PARAMETERS: M - number of rows N - number of columns A - target matrix, MxN submatrix is updated IA - submatrix offset (row index) JA - submatrix offset (column index) U - vector #1 IU - subvector offset V - vector #2 IV - subvector offset *************************************************************************)
procedure CMatrixRank1(M : AlglibInteger; N : AlglibInteger; var A : TComplex2DArray; IA : AlglibInteger; JA : AlglibInteger; var U : TComplex1DArray; IU : AlglibInteger; var V : TComplex1DArray; IV : AlglibInteger);

cmatrixrighttrsm subroutine

(************************************************************************* This subroutine calculates X*op(A^-1) where: * X is MxN general matrix * A is NxN upper/lower triangular/unitriangular matrix * "op" may be identity transformation, transposition, conjugate transposition Multiplication result replaces X. Cache-oblivious algorithm is used. INPUT PARAMETERS N - matrix size, N>=0 M - matrix size, N>=0 A - matrix, actial matrix is stored in A[I1:I1+N-1,J1:J1+N-1] I1 - submatrix offset J1 - submatrix offset IsUpper - whether matrix is upper triangular IsUnit - whether matrix is unitriangular OpType - transformation type: * 0 - no transformation * 1 - transposition * 2 - conjugate transposition C - matrix, actial matrix is stored in C[I2:I2+M-1,J2:J2+N-1] I2 - submatrix offset J2 - submatrix offset -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
procedure CMatrixRightTRSM(M : AlglibInteger; N : AlglibInteger; const A : TComplex2DArray; I1 : AlglibInteger; J1 : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean; OpType : AlglibInteger; var X : TComplex2DArray; I2 : AlglibInteger; J2 : AlglibInteger);

cmatrixsyrk subroutine

(************************************************************************* This subroutine calculates C=alpha*A*A^H+beta*C or C=alpha*A^H*A+beta*C where: * C is NxN Hermitian matrix given by its upper/lower triangle * A is NxK matrix when A*A^H is calculated, KxN matrix otherwise Additional info: * cache-oblivious algorithm is used. * multiplication result replaces C. If Beta=0, C elements are not used in calculations (not multiplied by zero - just not referenced) * if Alpha=0, A is not used (not multiplied by zero - just not referenced) * if both Beta and Alpha are zero, C is filled by zeros. INPUT PARAMETERS N - matrix size, N>=0 K - matrix size, K>=0 Alpha - coefficient A - matrix IA - submatrix offset JA - submatrix offset OpTypeA - multiplication type: * 0 - A*A^H is calculated * 2 - A^H*A is calculated Beta - coefficient C - matrix IC - submatrix offset JC - submatrix offset IsUpper - whether C is upper triangular or lower triangular -- ALGLIB routine -- 16.12.2009 Bochkanov Sergey *************************************************************************)
procedure CMatrixSYRK(N : AlglibInteger; K : AlglibInteger; Alpha : Double; const A : TComplex2DArray; IA : AlglibInteger; JA : AlglibInteger; OpTypeA : AlglibInteger; Beta : Double; var C : TComplex2DArray; IC : AlglibInteger; JC : AlglibInteger; IsUpper : Boolean);

cmatrixtranspose subroutine

(************************************************************************* Cache-oblivous complex "copy-and-transpose" Input parameters: M - number of rows N - number of columns A - source matrix, MxN submatrix is copied and transposed IA - submatrix offset (row index) JA - submatrix offset (column index) A - destination matrix IB - submatrix offset (row index) JB - submatrix offset (column index) *************************************************************************)
procedure CMatrixTranspose(M : AlglibInteger; N : AlglibInteger; const A : TComplex2DArray; IA : AlglibInteger; JA : AlglibInteger; var B : TComplex2DArray; IB : AlglibInteger; JB : AlglibInteger);

rmatrixcopy subroutine

(************************************************************************* Copy Input parameters: M - number of rows N - number of columns A - source matrix, MxN submatrix is copied and transposed IA - submatrix offset (row index) JA - submatrix offset (column index) B - destination matrix IB - submatrix offset (row index) JB - submatrix offset (column index) *************************************************************************)
procedure RMatrixCopy(M : AlglibInteger; N : AlglibInteger; const A : TReal2DArray; IA : AlglibInteger; JA : AlglibInteger; var B : TReal2DArray; IB : AlglibInteger; JB : AlglibInteger);

rmatrixgemm subroutine

(************************************************************************* Same as CMatrixGEMM, but for real numbers. OpType may be only 0 or 1. -- ALGLIB routine -- 16.12.2009 Bochkanov Sergey *************************************************************************)
procedure RMatrixGEMM(M : AlglibInteger; N : AlglibInteger; K : AlglibInteger; Alpha : Double; const A : TReal2DArray; IA : AlglibInteger; JA : AlglibInteger; OpTypeA : AlglibInteger; const B : TReal2DArray; IB : AlglibInteger; JB : AlglibInteger; OpTypeB : AlglibInteger; Beta : Double; var C : TReal2DArray; IC : AlglibInteger; JC : AlglibInteger);

rmatrixlefttrsm subroutine

(************************************************************************* Same as CMatrixLeftTRSM, but for real matrices OpType may be only 0 or 1. -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
procedure RMatrixLeftTRSM(M : AlglibInteger; N : AlglibInteger; const A : TReal2DArray; I1 : AlglibInteger; J1 : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean; OpType : AlglibInteger; var X : TReal2DArray; I2 : AlglibInteger; J2 : AlglibInteger);

rmatrixmv subroutine

(************************************************************************* Matrix-vector product: y := op(A)*x INPUT PARAMETERS: M - number of rows of op(A) N - number of columns of op(A) A - target matrix IA - submatrix offset (row index) JA - submatrix offset (column index) OpA - operation type: * OpA=0 => op(A) = A * OpA=1 => op(A) = A^T X - input vector IX - subvector offset IY - subvector offset OUTPUT PARAMETERS: Y - vector which stores result if M=0, then subroutine does nothing. if N=0, Y is filled by zeros. -- ALGLIB routine -- 28.01.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixMV(M : AlglibInteger; N : AlglibInteger; var A : TReal2DArray; IA : AlglibInteger; JA : AlglibInteger; OpA : AlglibInteger; var X : TReal1DArray; IX : AlglibInteger; var Y : TReal1DArray; IY : AlglibInteger);

rmatrixrank1 subroutine

(************************************************************************* Rank-1 correction: A := A + u*v' INPUT PARAMETERS: M - number of rows N - number of columns A - target matrix, MxN submatrix is updated IA - submatrix offset (row index) JA - submatrix offset (column index) U - vector #1 IU - subvector offset V - vector #2 IV - subvector offset *************************************************************************)
procedure RMatrixRank1(M : AlglibInteger; N : AlglibInteger; var A : TReal2DArray; IA : AlglibInteger; JA : AlglibInteger; var U : TReal1DArray; IU : AlglibInteger; var V : TReal1DArray; IV : AlglibInteger);

rmatrixrighttrsm subroutine

(************************************************************************* Same as CMatrixRightTRSM, but for real matrices OpType may be only 0 or 1. -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
procedure RMatrixRightTRSM(M : AlglibInteger; N : AlglibInteger; const A : TReal2DArray; I1 : AlglibInteger; J1 : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean; OpType : AlglibInteger; var X : TReal2DArray; I2 : AlglibInteger; J2 : AlglibInteger);

rmatrixsyrk subroutine

(************************************************************************* Same as CMatrixSYRK, but for real matrices OpType may be only 0 or 1. -- ALGLIB routine -- 16.12.2009 Bochkanov Sergey *************************************************************************)
procedure RMatrixSYRK(N : AlglibInteger; K : AlglibInteger; Alpha : Double; const A : TReal2DArray; IA : AlglibInteger; JA : AlglibInteger; OpTypeA : AlglibInteger; Beta : Double; var C : TReal2DArray; IC : AlglibInteger; JC : AlglibInteger; IsUpper : Boolean);

rmatrixtranspose subroutine

(************************************************************************* Cache-oblivous real "copy-and-transpose" Input parameters: M - number of rows N - number of columns A - source matrix, MxN submatrix is copied and transposed IA - submatrix offset (row index) JA - submatrix offset (column index) A - destination matrix IB - submatrix offset (row index) JB - submatrix offset (column index) *************************************************************************)
procedure RMatrixTranspose(M : AlglibInteger; N : AlglibInteger; const A : TReal2DArray; IA : AlglibInteger; JA : AlglibInteger; var B : TReal2DArray; IB : AlglibInteger; JB : AlglibInteger);

airyf unit

Subroutines

airy

airy subroutine

(************************************************************************* Airy function Solution of the differential equation y"(x) = xy. The function returns the two independent solutions Ai, Bi and their first derivatives Ai'(x), Bi'(x). Evaluation is by power series summation for small x, by rational minimax approximations for large x. ACCURACY: Error criterion is absolute when function <= 1, relative when function > 1, except * denotes relative error criterion. For large negative x, the absolute error increases as x^1.5. For large positive x, the relative error increases as x^1.5. Arithmetic domain function # trials peak rms IEEE -10, 0 Ai 10000 1.6e-15 2.7e-16 IEEE 0, 10 Ai 10000 2.3e-14* 1.8e-15* IEEE -10, 0 Ai' 10000 4.6e-15 7.6e-16 IEEE 0, 10 Ai' 10000 1.8e-14* 1.5e-15* IEEE -10, 10 Bi 30000 4.2e-15 5.3e-16 IEEE -10, 10 Bi' 30000 4.9e-15 7.3e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier *************************************************************************)
procedure Airy(x : Double; var Ai : Double; var Aip : Double; var Bi : Double; var Bip : Double);

autogk unit

Structures

autogkreport
autogkstate

Subroutines

autogkiteration
autogkresults
autogksingular
autogksmooth
autogksmoothw

Examples

autogk_singular
autogk_smooth

autogkreport structure

(************************************************************************* Integration report: * TerminationType = completetion code: * -5 non-convergence of Gauss-Kronrod nodes calculation subroutine. * -1 incorrect parameters were specified * 1 OK * Rep.NFEV countains number of function calculations * Rep.NIntervals contains number of intervals [a,b] was partitioned into. *************************************************************************)
AutoGKReport = record TerminationType : AlglibInteger; NFEV : AlglibInteger; NIntervals : AlglibInteger; end;

autogkstate structure

(************************************************************************* This structure stores internal state of the integration algorithm between subsequent calls of the AutoGKIteration() subroutine. *************************************************************************)
AutoGKState = record A : Double; B : Double; Alpha : Double; Beta : Double; XWidth : Double; X : Double; XMinusA : Double; BMinusX : Double; F : Double; WrapperMode : AlglibInteger; InternalState : AutoGKInternalState; RState : RCommState; V : Double; TerminationType : AlglibInteger; NFEV : AlglibInteger; NIntervals : AlglibInteger; end;

autogkiteration subroutine

(************************************************************************* One step of adaptive integration process. Called after initialization with one of AutoGKXXX subroutines. See HTML documentation for examples. Input parameters: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with one of AutoGKXXX subroutines. If suborutine returned False, iterative proces has converged. If subroutine returned True, caller should calculate function value State.F at State.X and call AutoGKIteration again. NOTE: When integrating "difficult" functions with integrable singularities like F(x) = (x-A)^alpha * (B-x)^beta subroutine may require the value of F at points which are too close to A/B. Sometimes to calculate integral with high enough precision we may need to calculate F(A+delta) when delta is less than machine epsilon. In finite precision arithmetics A+delta will be effectively equal to A, so we may find us in situation when we are trying to calculate something like 1/sqrt(1-1). To avoid such situations, AutoGKIteration subroutine fills not only State.X field, but also State.XMinusA (which equals to X-A) and State.BMinusX (which equals to B-X) fields. If X is too close to A or B (X-A<0.001*A, or B-X<0.001*B, for example) use these fields instead of State.X -- ALGLIB -- Copyright 07.05.2009 by Bochkanov Sergey *************************************************************************)
function AutoGKIteration(var State : AutoGKState):Boolean;

Examples:   autogk_singular  autogk_smooth  

autogkresults subroutine

(************************************************************************* Adaptive integration results Called after AutoGKIteration returned False. Input parameters: State - algorithm state (used by AutoGKIteration). Output parameters: V - integral(f(x)dx,a,b) Rep - optimization report (see AutoGKReport description) -- ALGLIB -- Copyright 14.11.2007 by Bochkanov Sergey *************************************************************************)
procedure AutoGKResults(const State : AutoGKState; var V : Double; var Rep : AutoGKReport);

Examples:   autogk_singular  autogk_smooth  

autogksingular subroutine

(************************************************************************* Integration on a finite interval [A,B]. Integrand have integrable singularities at A/B. F(X) must diverge as "(x-A)^alpha" at A, as "(B-x)^beta" at B, with known alpha/beta (alpha>-1, beta>-1). If alpha/beta are not known, estimates from below can be used (but these estimates should be greater than -1 too). One of alpha/beta variables (or even both alpha/beta) may be equal to 0, which means than function F(x) is non-singular at A/B. Anyway (singular at bounds or not), function F(x) is supposed to be continuous on (A,B). Fast-convergent algorithm based on a Gauss-Kronrod formula is used. Result is calculated with accuracy close to the machine precision. INPUT PARAMETERS: A, B - interval boundaries (A<B, A=B or A>B) Alpha - power-law coefficient of the F(x) at A, Alpha>-1 Beta - power-law coefficient of the F(x) at B, Beta>-1 OUTPUT PARAMETERS State - structure which stores algorithm state between subsequent calls of AutoGKIteration. Used for reverse communication. This structure should be passed to the AutoGKIteration subroutine. SEE ALSO AutoGKSmooth, AutoGKSmoothW, AutoGKIteration, AutoGKResults. -- ALGLIB -- Copyright 06.05.2009 by Bochkanov Sergey *************************************************************************)
procedure AutoGKSingular(A : Double; B : Double; Alpha : Double; Beta : Double; var State : AutoGKState);

Examples:   autogk_singular  

autogksmooth subroutine

(************************************************************************* Integration of a smooth function F(x) on a finite interval [a,b]. Fast-convergent algorithm based on a Gauss-Kronrod formula is used. Result is calculated with accuracy close to the machine precision. Algorithm works well only with smooth integrands. It may be used with continuous non-smooth integrands, but with less performance. It should never be used with integrands which have integrable singularities at lower or upper limits - algorithm may crash. Use AutoGKSingular in such cases. INPUT PARAMETERS: A, B - interval boundaries (A<B, A=B or A>B) OUTPUT PARAMETERS State - structure which stores algorithm state between subsequent calls of AutoGKIteration. Used for reverse communication. This structure should be passed to the AutoGKIteration subroutine. SEE ALSO AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults. -- ALGLIB -- Copyright 06.05.2009 by Bochkanov Sergey *************************************************************************)
procedure AutoGKSmooth(A : Double; B : Double; var State : AutoGKState);

Examples:   autogk_smooth  

autogksmoothw subroutine

(************************************************************************* Integration of a smooth function F(x) on a finite interval [a,b]. This subroutine is same as AutoGKSmooth(), but it guarantees that interval [a,b] is partitioned into subintervals which have width at most XWidth. Subroutine can be used when integrating nearly-constant function with narrow "bumps" (about XWidth wide). If "bumps" are too narrow, AutoGKSmooth subroutine can overlook them. INPUT PARAMETERS: A, B - interval boundaries (A<B, A=B or A>B) OUTPUT PARAMETERS State - structure which stores algorithm state between subsequent calls of AutoGKIteration. Used for reverse communication. This structure should be passed to the AutoGKIteration subroutine. SEE ALSO AutoGKSmooth, AutoGKSingular, AutoGKIteration, AutoGKResults. -- ALGLIB -- Copyright 06.05.2009 by Bochkanov Sergey *************************************************************************)
procedure AutoGKSmoothW(A : Double; B : Double; XWidth : Double; var State : AutoGKState);

autogk_singular example

var
    State : AutoGKState;
    V : Double;
    Rep : AutoGKReport;
    A : Double;
    B : Double;
    Alpha : Double;
begin
    
    //
    // f1(x) = (1+x)*(x-a)^alpha, alpha=-0.3
    // Exact answer is (B-A)^(Alpha+2)/(Alpha+2) + (1+A)*(B-A)^(Alpha+1)/(Alpha+1)
    //
    // This code demonstrates use of the State.XMinusA (State.BMinusX) field.
    //
    // If we try to use State.X instead of State.XMinusA,
    // we will end up dividing by zero! (in 64-bit precision)
    //
    A := Double(1.0);
    B := Double(5.0);
    Alpha := -Double(0.9);
    AutoGKSingular(A, B, Alpha, Double(0.0), State);
    while AutoGKIteration(State) do
    begin
        State.F := Power(State.XMinusA, Alpha)*(1+State.X);
    end;
    AutoGKResults(State, V, Rep);
    Write(Format('integral((1+x)*(x-a)^alpha) on [%0.1f; %0.1f] = %0.2f'#13#10'Exact answer is %0.2f'#13#10'',[
        A,
        B,
        V,
        Power(B-A, Alpha+2)/(Alpha+2)+(1+A)*Power(B-A, Alpha+1)/(Alpha+1)]));
end.

autogk_smooth example

var
    State : AutoGKState;
    V : Double;
    Rep : AutoGKReport;
begin
    
    //
    // f(x) = x*sin(x), integrated at [-pi, pi].
    // Exact answer is 2*pi
    //
    AutoGKSmooth(-Pi, +Pi, State);
    while AutoGKIteration(State) do
    begin
        State.F := State.X*Sin(State.X);
    end;
    AutoGKResults(State, V, Rep);
    Write(Format('integral(x*sin(x),-pi,+pi) = %0.2f'#13#10'Exact answer is %0.2f'#13#10'',[
        V,
        2*Pi]));
end.

bdsvd unit

Subroutines

rmatrixbdsvd

rmatrixbdsvd subroutine

(************************************************************************* Singular value decomposition of a bidiagonal matrix (extended algorithm) The algorithm performs the singular value decomposition of a bidiagonal matrix B (upper or lower) representing it as B = Q*S*P^T, where Q and P - orthogonal matrices, S - diagonal matrix with non-negative elements on the main diagonal, in descending order. The algorithm finds singular values. In addition, the algorithm can calculate matrices Q and P (more precisely, not the matrices, but their product with given matrices U and VT - U*Q and (P^T)*VT)). Of course, matrices U and VT can be of any type, including identity. Furthermore, the algorithm can calculate Q'*C (this product is calculated more effectively than U*Q, because this calculation operates with rows instead of matrix columns). The feature of the algorithm is its ability to find all singular values including those which are arbitrarily close to 0 with relative accuracy close to machine precision. If the parameter IsFractionalAccuracyRequired is set to True, all singular values will have high relative accuracy close to machine precision. If the parameter is set to False, only the biggest singular value will have relative accuracy close to machine precision. The absolute error of other singular values is equal to the absolute error of the biggest singular value. Input parameters: D - main diagonal of matrix B. Array whose index ranges within [0..N-1]. E - superdiagonal (or subdiagonal) of matrix B. Array whose index ranges within [0..N-2]. N - size of matrix B. IsUpper - True, if the matrix is upper bidiagonal. IsFractionalAccuracyRequired - accuracy to search singular values with. U - matrix to be multiplied by Q. Array whose indexes range within [0..NRU-1, 0..N-1]. The matrix can be bigger, in that case only the submatrix [0..NRU-1, 0..N-1] will be multiplied by Q. NRU - number of rows in matrix U. C - matrix to be multiplied by Q'. Array whose indexes range within [0..N-1, 0..NCC-1]. The matrix can be bigger, in that case only the submatrix [0..N-1, 0..NCC-1] will be multiplied by Q'. NCC - number of columns in matrix C. VT - matrix to be multiplied by P^T. Array whose indexes range within [0..N-1, 0..NCVT-1]. The matrix can be bigger, in that case only the submatrix [0..N-1, 0..NCVT-1] will be multiplied by P^T. NCVT - number of columns in matrix VT. Output parameters: D - singular values of matrix B in descending order. U - if NRU>0, contains matrix U*Q. VT - if NCVT>0, contains matrix (P^T)*VT. C - if NCC>0, contains matrix Q'*C. Result: True, if the algorithm has converged. False, if the algorithm hasn't converged (rare case). Additional information: The type of convergence is controlled by the internal parameter TOL. If the parameter is greater than 0, the singular values will have relative accuracy TOL. If TOL<0, the singular values will have absolute accuracy ABS(TOL)*norm(B). By default, |TOL| falls within the range of 10*Epsilon and 100*Epsilon, where Epsilon is the machine precision. It is not recommended to use TOL less than 10*Epsilon since this will considerably slow down the algorithm and may not lead to error decreasing. History: * 31 March, 2007. changed MAXITR from 6 to 12. -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1999. *************************************************************************)
function RMatrixBDSVD(var D : TReal1DArray; E : TReal1DArray; N : AlglibInteger; IsUpper : Boolean; IsFractionalAccuracyRequired : Boolean; var U : TReal2DArray; NRU : AlglibInteger; var C : TReal2DArray; NCC : AlglibInteger; var VT : TReal2DArray; NCVT : AlglibInteger):Boolean;

bessel unit

Subroutines

besseli0
besseli1
besselj0
besselj1
besseljn
besselk0
besselk1
besselkn
bessely0
bessely1
besselyn

besseli0 subroutine

(************************************************************************* Modified Bessel function of order zero Returns modified Bessel function of order zero of the argument. The function is defined as i0(x) = j0( ix ). The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,30 30000 5.8e-16 1.4e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function BesselI0(X : Double):Double;

besseli1 subroutine

(************************************************************************* Modified Bessel function of order one Returns modified Bessel function of order one of the argument. The function is defined as i1(x) = -i j1( ix ). The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0, 30 30000 1.9e-15 2.1e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1985, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function BesselI1(x : Double):Double;

besselj0 subroutine

(************************************************************************* Bessel function of order zero Returns Bessel function of order zero of the argument. The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval the following rational approximation is used: 2 2 (w - r ) (w - r ) P (w) / Q (w) 1 2 3 8 2 where w = x and the two r's are zeros of the function. In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7. ACCURACY: Absolute error: arithmetic domain # trials peak rms IEEE 0, 30 60000 4.2e-16 1.1e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier *************************************************************************)
function BesselJ0(X : Double):Double;

besselj1 subroutine

(************************************************************************* Bessel function of order one Returns Bessel function of order one of the argument. The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 24 term Chebyshev expansion is used. In the second, the asymptotic trigonometric representation is employed using two rational functions of degree 5/5. ACCURACY: Absolute error: arithmetic domain # trials peak rms IEEE 0, 30 30000 2.6e-16 1.1e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier *************************************************************************)
function BesselJ1(X : Double):Double;

besseljn subroutine

(************************************************************************* Bessel function of integer order Returns Bessel function of order n, where n is a (possibly negative) integer. The ratio of jn(x) to j0(x) is computed by backward recurrence. First the ratio jn/jn-1 is found by a continued fraction expansion. Then the recurrence relating successive orders is applied until j0 or j1 is reached. If n = 0 or 1 the routine for j0 or j1 is called directly. ACCURACY: Absolute error: arithmetic range # trials peak rms IEEE 0, 30 5000 4.4e-16 7.9e-17 Not suitable for large n or x. Use jv() (fractional order) instead. Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function BesselJN(n : AlglibInteger; x : Double):Double;

besselk0 subroutine

(************************************************************************* Modified Bessel function, second kind, order zero Returns modified Bessel function of the second kind of order zero of the argument. The range is partitioned into the two intervals [0,8] and (8, infinity). Chebyshev polynomial expansions are employed in each interval. ACCURACY: Tested at 2000 random points between 0 and 8. Peak absolute error (relative when K0 > 1) was 1.46e-14; rms, 4.26e-15. Relative error: arithmetic domain # trials peak rms IEEE 0, 30 30000 1.2e-15 1.6e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function BesselK0(X : Double):Double;

besselk1 subroutine

(************************************************************************* Modified Bessel function, second kind, order one Computes the modified Bessel function of the second kind of order one of the argument. The range is partitioned into the two intervals [0,2] and (2, infinity). Chebyshev polynomial expansions are employed in each interval. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0, 30 30000 1.2e-15 1.6e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function BesselK1(x : Double):Double;

besselkn subroutine

(************************************************************************* Modified Bessel function, second kind, integer order Returns modified Bessel function of the second kind of order n of the argument. The range is partitioned into the two intervals [0,9.55] and (9.55, infinity). An ascending power series is used in the low range, and an asymptotic expansion in the high range. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,30 90000 1.8e-8 3.0e-10 Error is high only near the crossover point x = 9.55 between the two expansions used. Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier *************************************************************************)
function BesselKN(nn : AlglibInteger; x : Double):Double;

bessely0 subroutine

(************************************************************************* Bessel function of the second kind, order zero Returns Bessel function of the second kind, of order zero, of the argument. The domain is divided into the intervals [0, 5] and (5, infinity). In the first interval a rational approximation R(x) is employed to compute y0(x) = R(x) + 2 * log(x) * j0(x) / PI. Thus a call to j0() is required. In the second interval, the Hankel asymptotic expansion is employed with two rational functions of degree 6/6 and 7/7. ACCURACY: Absolute error, when y0(x) < 1; else relative error: arithmetic domain # trials peak rms IEEE 0, 30 30000 1.3e-15 1.6e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier *************************************************************************)
function BesselY0(X : Double):Double;

bessely1 subroutine

(************************************************************************* Bessel function of second kind of order one Returns Bessel function of the second kind of order one of the argument. The domain is divided into the intervals [0, 8] and (8, infinity). In the first interval a 25 term Chebyshev expansion is used, and a call to j1() is required. In the second, the asymptotic trigonometric representation is employed using two rational functions of degree 5/5. ACCURACY: Absolute error: arithmetic domain # trials peak rms IEEE 0, 30 30000 1.0e-15 1.3e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier *************************************************************************)
function BesselY1(X : Double):Double;

besselyn subroutine

(************************************************************************* Bessel function of second kind of integer order Returns Bessel function of order n, where n is a (possibly negative) integer. The function is evaluated by forward recurrence on n, starting with values computed by the routines y0() and y1(). If n = 0 or 1 the routine for y0 or y1 is called directly. ACCURACY: Absolute error, except relative when y > 1: arithmetic domain # trials peak rms IEEE 0, 30 30000 3.4e-15 4.3e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function BesselYN(N : AlglibInteger; X : Double):Double;

betaf unit

Subroutines

beta

beta subroutine

(************************************************************************* Beta function - - | (a) | (b) beta( a, b ) = -----------. - | (a+b) For large arguments the logarithm of the function is evaluated using lgam(), then exponentiated. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,30 30000 8.1e-14 1.1e-14 Cephes Math Library Release 2.0: April, 1987 Copyright 1984, 1987 by Stephen L. Moshier *************************************************************************)
function Beta(a : Double; b : Double):Double;

binomialdistr unit

Subroutines

binomialcdistribution
binomialdistribution
invbinomialdistribution

binomialcdistribution subroutine

(************************************************************************* Complemented binomial distribution Returns the sum of the terms k+1 through n of the Binomial probability density: n -- ( n ) j n-j > ( ) p (1-p) -- ( j ) j=k+1 The terms are not summed directly; instead the incomplete beta integral is employed, according to the formula y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ). The arguments must be positive, with p ranging from 0 to 1. ACCURACY: Tested at random points (a,b,p). a,b Relative error: arithmetic domain # trials peak rms For p between 0.001 and 1: IEEE 0,100 100000 6.7e-15 8.2e-16 For p between 0 and .001: IEEE 0,100 100000 1.5e-13 2.7e-15 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function BinomialCDistribution(k : AlglibInteger; n : AlglibInteger; p : Double):Double;

binomialdistribution subroutine

(************************************************************************* Binomial distribution Returns the sum of the terms 0 through k of the Binomial probability density: k -- ( n ) j n-j > ( ) p (1-p) -- ( j ) j=0 The terms are not summed directly; instead the incomplete beta integral is employed, according to the formula y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ). The arguments must be positive, with p ranging from 0 to 1. ACCURACY: Tested at random points (a,b,p), with p between 0 and 1. a,b Relative error: arithmetic domain # trials peak rms For p between 0.001 and 1: IEEE 0,100 100000 4.3e-15 2.6e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function BinomialDistribution(k : AlglibInteger; n : AlglibInteger; p : Double):Double;

invbinomialdistribution subroutine

(************************************************************************* Inverse binomial distribution Finds the event probability p such that the sum of the terms 0 through k of the Binomial probability density is equal to the given cumulative probability y. This is accomplished using the inverse beta integral function and the relation 1 - p = incbi( n-k, k+1, y ). ACCURACY: Tested at random points (a,b,p). a,b Relative error: arithmetic domain # trials peak rms For p between 0.001 and 1: IEEE 0,100 100000 2.3e-14 6.4e-16 IEEE 0,10000 100000 6.6e-12 1.2e-13 For p between 10^-6 and 0.001: IEEE 0,100 100000 2.0e-12 1.3e-14 IEEE 0,10000 100000 1.5e-12 3.2e-14 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function InvBinomialDistribution(k : AlglibInteger; n : AlglibInteger; y : Double):Double;

chebyshev unit

Subroutines

chebyshevcalculate
chebyshevcoefficients
chebyshevsum
fromchebyshev

chebyshevcalculate subroutine

(************************************************************************* Calculation of the value of the Chebyshev polynomials of the first and second kinds. Parameters: r - polynomial kind, either 1 or 2. n - degree, n>=0 x - argument, -1 <= x <= 1 Result: the value of the Chebyshev polynomial at x *************************************************************************)
function ChebyshevCalculate(const r : AlglibInteger; const N : AlglibInteger; const X : Double):Double;

chebyshevcoefficients subroutine

(************************************************************************* Representation of Tn as C[0] + C[1]*X + ... + C[N]*X^N Input parameters: N - polynomial degree, n>=0 Output parameters: C - coefficients *************************************************************************)
procedure ChebyshevCoefficients(const N : AlglibInteger; var C : TReal1DArray);

chebyshevsum subroutine

(************************************************************************* Summation of Chebyshev polynomials using Clenshaw’s recurrence formula. This routine calculates c[0]*T0(x) + c[1]*T1(x) + ... + c[N]*TN(x) or c[0]*U0(x) + c[1]*U1(x) + ... + c[N]*UN(x) depending on the R. Parameters: r - polynomial kind, either 1 or 2. n - degree, n>=0 x - argument Result: the value of the Chebyshev polynomial at x *************************************************************************)
function ChebyshevSum(const C : TReal1DArray; const r : AlglibInteger; const n : AlglibInteger; const x : Double):Double;

fromchebyshev subroutine

(************************************************************************* Conversion of a series of Chebyshev polynomials to a power series. Represents A[0]*T0(x) + A[1]*T1(x) + ... + A[N]*Tn(x) as B[0] + B[1]*X + ... + B[N]*X^N. Input parameters: A - Chebyshev series coefficients N - degree, N>=0 Output parameters B - power series coefficients *************************************************************************)
procedure FromChebyshev(const A : TReal1DArray; const N : AlglibInteger; var B : TReal1DArray);

chisquaredistr unit

Subroutines

chisquarecdistribution
chisquaredistribution
invchisquaredistribution

chisquarecdistribution subroutine

(************************************************************************* Complemented Chi-square distribution Returns the area under the right hand tail (from x to infinity) of the Chi square probability density function with v degrees of freedom: inf. - 1 | | v/2-1 -t/2 P( x | v ) = ----------- | t e dt v/2 - | | 2 | (v/2) - x where x is the Chi-square variable. The incomplete gamma integral is used, according to the formula y = chdtr( v, x ) = igamc( v/2.0, x/2.0 ). The arguments must both be positive. ACCURACY: See incomplete gamma function Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function ChiSquareCDistribution(v : Double; x : Double):Double;

chisquaredistribution subroutine

(************************************************************************* Chi-square distribution Returns the area under the left hand tail (from 0 to x) of the Chi square probability density function with v degrees of freedom. x - 1 | | v/2-1 -t/2 P( x | v ) = ----------- | t e dt v/2 - | | 2 | (v/2) - 0 where x is the Chi-square variable. The incomplete gamma integral is used, according to the formula y = chdtr( v, x ) = igam( v/2.0, x/2.0 ). The arguments must both be positive. ACCURACY: See incomplete gamma function Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function ChiSquareDistribution(v : Double; x : Double):Double;

invchisquaredistribution subroutine

(************************************************************************* Inverse of complemented Chi-square distribution Finds the Chi-square argument x such that the integral from x to infinity of the Chi-square density is equal to the given cumulative probability y. This is accomplished using the inverse gamma integral function and the relation x/2 = igami( df/2, y ); ACCURACY: See inverse incomplete gamma function Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function InvChiSquareDistribution(v : Double; y : Double):Double;

conv unit

Subroutines

convc1d
convc1dcircular
convc1dcircularinv
convc1dinv
convc1dx
convr1d
convr1dcircular
convr1dcircularinv
convr1dinv
convr1dx

convc1d subroutine

(************************************************************************* 1-dimensional complex convolution. For given A/B returns conv(A,B) (non-circular). Subroutine can automatically choose between three implementations: straightforward O(M*N) formula for very small N (or M), overlap-add algorithm for cases where max(M,N) is significantly larger than min(M,N), but O(M*N) algorithm is too slow, and general FFT-based formula for cases where two previois algorithms are too slow. Algorithm has max(M,N)*log(max(M,N)) complexity for any M/N. INPUT PARAMETERS A - array[0..M-1] - complex function to be transformed M - problem size B - array[0..N-1] - complex function to be transformed N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..N+M-2]. NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvC1D(const A : TComplex1DArray; M : AlglibInteger; const B : TComplex1DArray; N : AlglibInteger; var R : TComplex1DArray);

convc1dcircular subroutine

(************************************************************************* 1-dimensional circular complex convolution. For given S/R returns conv(S,R) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: normal convolution is commutative, i.e. it is symmetric - conv(A,B)=conv(B,A). Cyclic convolution IS NOT. One function - S - is a signal, periodic function, and another - R - is a response, non-periodic function with limited length. INPUT PARAMETERS S - array[0..M-1] - complex periodic signal M - problem size B - array[0..N-1] - complex non-periodic response N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvC1DCircular(const S : TComplex1DArray; M : AlglibInteger; const R : TComplex1DArray; N : AlglibInteger; var C : TComplex1DArray);

convc1dcircularinv subroutine

(************************************************************************* 1-dimensional circular complex deconvolution (inverse of ConvC1DCircular()). Algorithm has M*log(M)) complexity for any M (composite or prime). INPUT PARAMETERS A - array[0..M-1] - convolved periodic signal, A = conv(R, B) M - convolved signal length B - array[0..N-1] - non-periodic response N - response length OUTPUT PARAMETERS R - deconvolved signal. array[0..M-1]. NOTE: deconvolution is unstable process and may result in division by zero (if your response function is degenerate, i.e. has zero Fourier coefficient). NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvC1DCircularInv(const A : TComplex1DArray; M : AlglibInteger; const B : TComplex1DArray; N : AlglibInteger; var R : TComplex1DArray);

convc1dinv subroutine

(************************************************************************* 1-dimensional complex non-circular deconvolution (inverse of ConvC1D()). Algorithm has M*log(M)) complexity for any M (composite or prime). INPUT PARAMETERS A - array[0..M-1] - convolved signal, A = conv(R, B) M - convolved signal length B - array[0..N-1] - response N - response length, N<=M OUTPUT PARAMETERS R - deconvolved signal. array[0..M-N]. NOTE: deconvolution is unstable process and may result in division by zero (if your response function is degenerate, i.e. has zero Fourier coefficient). NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvC1DInv(const A : TComplex1DArray; M : AlglibInteger; const B : TComplex1DArray; N : AlglibInteger; var R : TComplex1DArray);

convc1dx subroutine

(************************************************************************* 1-dimensional complex convolution. Extended subroutine which allows to choose convolution algorithm. Intended for internal use, ALGLIB users should call ConvC1D()/ConvC1DCircular(). INPUT PARAMETERS A - array[0..M-1] - complex function to be transformed M - problem size B - array[0..N-1] - complex function to be transformed N - problem size, N<=M Alg - algorithm type: *-2 auto-select Q for overlap-add *-1 auto-select algorithm and parameters * 0 straightforward formula for small N's * 1 general FFT-based code * 2 overlap-add with length Q Q - length for overlap-add OUTPUT PARAMETERS R - convolution: A*B. array[0..N+M-1]. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvC1DX(const A : TComplex1DArray; M : AlglibInteger; const B : TComplex1DArray; N : AlglibInteger; Circular : Boolean; Alg : AlglibInteger; Q : AlglibInteger; var R : TComplex1DArray);

convr1d subroutine

(************************************************************************* 1-dimensional real convolution. Analogous to ConvC1D(), see ConvC1D() comments for more details. INPUT PARAMETERS A - array[0..M-1] - real function to be transformed M - problem size B - array[0..N-1] - real function to be transformed N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..N+M-2]. NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvR1D(const A : TReal1DArray; M : AlglibInteger; const B : TReal1DArray; N : AlglibInteger; var R : TReal1DArray);

convr1dcircular subroutine

(************************************************************************* 1-dimensional circular real convolution. Analogous to ConvC1DCircular(), see ConvC1DCircular() comments for more details. INPUT PARAMETERS S - array[0..M-1] - real signal M - problem size B - array[0..N-1] - real response N - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvR1DCircular(const S : TReal1DArray; M : AlglibInteger; const R : TReal1DArray; N : AlglibInteger; var C : TReal1DArray);

convr1dcircularinv subroutine

(************************************************************************* 1-dimensional complex deconvolution (inverse of ConvC1D()). Algorithm has M*log(M)) complexity for any M (composite or prime). INPUT PARAMETERS A - array[0..M-1] - convolved signal, A = conv(R, B) M - convolved signal length B - array[0..N-1] - response N - response length OUTPUT PARAMETERS R - deconvolved signal. array[0..M-N]. NOTE: deconvolution is unstable process and may result in division by zero (if your response function is degenerate, i.e. has zero Fourier coefficient). NOTE: It is assumed that B is zero at T<0. If it has non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvR1DCircularInv(const A : TReal1DArray; M : AlglibInteger; const B : TReal1DArray; N : AlglibInteger; var R : TReal1DArray);

convr1dinv subroutine

(************************************************************************* 1-dimensional real deconvolution (inverse of ConvC1D()). Algorithm has M*log(M)) complexity for any M (composite or prime). INPUT PARAMETERS A - array[0..M-1] - convolved signal, A = conv(R, B) M - convolved signal length B - array[0..N-1] - response N - response length, N<=M OUTPUT PARAMETERS R - deconvolved signal. array[0..M-N]. NOTE: deconvolution is unstable process and may result in division by zero (if your response function is degenerate, i.e. has zero Fourier coefficient). NOTE: It is assumed that A is zero at T<0, B is zero too. If one or both functions have non-zero values at negative T's, you can still use this subroutine - just shift its result correspondingly. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvR1DInv(const A : TReal1DArray; M : AlglibInteger; const B : TReal1DArray; N : AlglibInteger; var R : TReal1DArray);

convr1dx subroutine

(************************************************************************* 1-dimensional real convolution. Extended subroutine which allows to choose convolution algorithm. Intended for internal use, ALGLIB users should call ConvR1D(). INPUT PARAMETERS A - array[0..M-1] - complex function to be transformed M - problem size B - array[0..N-1] - complex function to be transformed N - problem size, N<=M Alg - algorithm type: *-2 auto-select Q for overlap-add *-1 auto-select algorithm and parameters * 0 straightforward formula for small N's * 1 general FFT-based code * 2 overlap-add with length Q Q - length for overlap-add OUTPUT PARAMETERS R - convolution: A*B. array[0..N+M-1]. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure ConvR1DX(const A : TReal1DArray; M : AlglibInteger; const B : TReal1DArray; N : AlglibInteger; Circular : Boolean; Alg : AlglibInteger; Q : AlglibInteger; var R : TReal1DArray);

corr unit

Subroutines

corrc1d
corrc1dcircular
corrr1d
corrr1dcircular

corrc1d subroutine

(************************************************************************* 1-dimensional complex cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (non-circular). Correlation is calculated using reduction to convolution. Algorithm with max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info about performance). IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrC1D(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - complex function to be transformed, signal containing pattern N - problem size Pattern - array[0..M-1] - complex function to be transformed, pattern to search withing signal M - problem size OUTPUT PARAMETERS R - cross-correlation, array[0..N+M-2]: * positive lags are stored in R[0..N-1], R[i] = sum(conj(pattern[j])*signal[i+j] * negative lags are stored in R[N..N+M-2], R[N+M-1-i] = sum(conj(pattern[j])*signal[-i+j] NOTE: It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero on [-K..M-1], you can still use this subroutine, just shift result by K. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure CorrC1D(const Signal : TComplex1DArray; N : AlglibInteger; const Pattern : TComplex1DArray; M : AlglibInteger; var R : TComplex1DArray);

corrc1dcircular subroutine

(************************************************************************* 1-dimensional circular complex cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrC1DCircular(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - complex function to be transformed, periodic signal containing pattern N - problem size Pattern - array[0..M-1] - complex function to be transformed, non-periodic pattern to search withing signal M - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure CorrC1DCircular(const Signal : TComplex1DArray; M : AlglibInteger; const Pattern : TComplex1DArray; N : AlglibInteger; var C : TComplex1DArray);

corrr1d subroutine

(************************************************************************* 1-dimensional real cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (non-circular). Correlation is calculated using reduction to convolution. Algorithm with max(N,N)*log(max(N,N)) complexity is used (see ConvC1D() for more info about performance). IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrR1D(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - real function to be transformed, signal containing pattern N - problem size Pattern - array[0..M-1] - real function to be transformed, pattern to search withing signal M - problem size OUTPUT PARAMETERS R - cross-correlation, array[0..N+M-2]: * positive lags are stored in R[0..N-1], R[i] = sum(pattern[j]*signal[i+j] * negative lags are stored in R[N..N+M-2], R[N+M-1-i] = sum(pattern[j]*signal[-i+j] NOTE: It is assumed that pattern domain is [0..M-1]. If Pattern is non-zero on [-K..M-1], you can still use this subroutine, just shift result by K. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure CorrR1D(const Signal : TReal1DArray; N : AlglibInteger; const Pattern : TReal1DArray; M : AlglibInteger; var R : TReal1DArray);

corrr1dcircular subroutine

(************************************************************************* 1-dimensional circular real cross-correlation. For given Pattern/Signal returns corr(Pattern,Signal) (circular). Algorithm has linearithmic complexity for any M/N. IMPORTANT: for historical reasons subroutine accepts its parameters in reversed order: CorrR1DCircular(Signal, Pattern) = Pattern x Signal (using traditional definition of cross-correlation, denoting cross-correlation as "x"). INPUT PARAMETERS Signal - array[0..N-1] - real function to be transformed, periodic signal containing pattern N - problem size Pattern - array[0..M-1] - real function to be transformed, non-periodic pattern to search withing signal M - problem size OUTPUT PARAMETERS R - convolution: A*B. array[0..M-1]. -- ALGLIB -- Copyright 21.07.2009 by Bochkanov Sergey *************************************************************************)
procedure CorrR1DCircular(const Signal : TReal1DArray; M : AlglibInteger; const Pattern : TReal1DArray; N : AlglibInteger; var C : TReal1DArray);

correlation unit

Subroutines

pearsoncorrelation
spearmanrankcorrelation

pearsoncorrelation subroutine

(************************************************************************* Pearson product-moment correlation coefficient Input parameters: X - sample 1 (array indexes: [0..N-1]) Y - sample 2 (array indexes: [0..N-1]) N - sample size. Result: Pearson product-moment correlation coefficient -- ALGLIB -- Copyright 09.04.2007 by Bochkanov Sergey *************************************************************************)
function PearsonCorrelation(const X : TReal1DArray; const Y : TReal1DArray; N : AlglibInteger):Double;

spearmanrankcorrelation subroutine

(************************************************************************* Spearman's rank correlation coefficient Input parameters: X - sample 1 (array indexes: [0..N-1]) Y - sample 2 (array indexes: [0..N-1]) N - sample size. Result: Spearman's rank correlation coefficient -- ALGLIB -- Copyright 09.04.2007 by Bochkanov Sergey *************************************************************************)
function SpearmanRankCorrelation(X : TReal1DArray; Y : TReal1DArray; N : AlglibInteger):Double;

correlationtests unit

Subroutines

pearsoncorrelationsignificance
spearmanrankcorrelationsignificance

pearsoncorrelationsignificance subroutine

(************************************************************************* Pearson's correlation coefficient significance test This test checks hypotheses about whether X and Y are samples of two continuous distributions having zero correlation or whether their correlation is non-zero. The following tests are performed: * two-tailed test (null hypothesis - X and Y have zero correlation) * left-tailed test (null hypothesis - the correlation coefficient is greater than or equal to 0) * right-tailed test (null hypothesis - the correlation coefficient is less than or equal to 0). Requirements: * the number of elements in each sample is not less than 5 * normality of distributions of X and Y. Input parameters: R - Pearson's correlation coefficient for X and Y N - number of elements in samples, N>=5. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. -- ALGLIB -- Copyright 09.04.2007 by Bochkanov Sergey *************************************************************************)
procedure PearsonCorrelationSignificance(R : Double; N : AlglibInteger; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

spearmanrankcorrelationsignificance subroutine

(************************************************************************* Spearman's rank correlation coefficient significance test This test checks hypotheses about whether X and Y are samples of two continuous distributions having zero correlation or whether their correlation is non-zero. The following tests are performed: * two-tailed test (null hypothesis - X and Y have zero correlation) * left-tailed test (null hypothesis - the correlation coefficient is greater than or equal to 0) * right-tailed test (null hypothesis - the correlation coefficient is less than or equal to 0). Requirements: * the number of elements in each sample is not less than 5. The test is non-parametric and doesn't require distributions X and Y to be normal. Input parameters: R - Spearman's rank correlation coefficient for X and Y N - number of elements in samples, N>=5. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. -- ALGLIB -- Copyright 09.04.2007 by Bochkanov Sergey *************************************************************************)
procedure SpearmanRankCorrelationSignificance(R : Double; N : AlglibInteger; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

dawson unit

Subroutines

dawsonintegral

dawsonintegral subroutine

(************************************************************************* Dawson's Integral Approximates the integral x - 2 | | 2 dawsn(x) = exp( -x ) | exp( t ) dt | | - 0 Three different rational approximations are employed, for the intervals 0 to 3.25; 3.25 to 6.25; and 6.25 up. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,10 10000 6.9e-16 1.0e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier *************************************************************************)
function DawsonIntegral(X : Double):Double;

densesolver unit

Subroutines

cmatrixlusolve
cmatrixlusolvem
cmatrixmixedsolve
cmatrixmixedsolvem
cmatrixsolve
cmatrixsolvem
hpdmatrixcholeskysolve
hpdmatrixcholeskysolvem
hpdmatrixsolve
hpdmatrixsolvem
rmatrixlusolve
rmatrixlusolvem
rmatrixmixedsolve
rmatrixmixedsolvem
rmatrixsolve
rmatrixsolvels
rmatrixsolvem
spdmatrixcholeskysolve
spdmatrixcholeskysolvem
spdmatrixsolve
spdmatrixsolvem

cmatrixlusolve subroutine

(************************************************************************* Dense solver. Same as RMatrixLUSolve(), but for complex matrices. Algorithm features: * automatic detection of degenerate cases * O(N^2) complexity * condition number estimation No iterative refinement is provided because exact form of original matrix is not known to subroutine. Use CMatrixSolve or CMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS LUA - array[0..N-1,0..N-1], LU decomposition, CMatrixLU result P - array[0..N-1], pivots array, CMatrixLU result N - size of A B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure CMatrixLUSolve(const LUA : TComplex2DArray; const P : TInteger1DArray; N : AlglibInteger; const B : TComplex1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex1DArray);

cmatrixlusolvem subroutine

(************************************************************************* Dense solver. Same as RMatrixLUSolveM(), but for complex matrices. Algorithm features: * automatic detection of degenerate cases * O(M*N^2) complexity * condition number estimation No iterative refinement is provided because exact form of original matrix is not known to subroutine. Use CMatrixSolve or CMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result P - array[0..N-1], pivots array, RMatrixLU result N - size of A B - array[0..N-1,0..M-1], right part M - right part size OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure CMatrixLUSolveM(const LUA : TComplex2DArray; const P : TInteger1DArray; N : AlglibInteger; const B : TComplex2DArray; M : AlglibInteger; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex2DArray);

cmatrixmixedsolve subroutine

(************************************************************************* Dense solver. Same as RMatrixMixedSolve(), but for complex matrices. Algorithm features: * automatic detection of degenerate cases * condition number estimation * iterative refinement * O(N^2) complexity INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix LUA - array[0..N-1,0..N-1], LU decomposition, CMatrixLU result P - array[0..N-1], pivots array, CMatrixLU result N - size of A B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolveM Rep - same as in RMatrixSolveM X - same as in RMatrixSolveM -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure CMatrixMixedSolve(const A : TComplex2DArray; const LUA : TComplex2DArray; const P : TInteger1DArray; N : AlglibInteger; const B : TComplex1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex1DArray);

cmatrixmixedsolvem subroutine

(************************************************************************* Dense solver. Same as RMatrixMixedSolveM(), but for complex matrices. Algorithm features: * automatic detection of degenerate cases * condition number estimation * iterative refinement * O(M*N^2) complexity INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix LUA - array[0..N-1,0..N-1], LU decomposition, CMatrixLU result P - array[0..N-1], pivots array, CMatrixLU result N - size of A B - array[0..N-1,0..M-1], right part M - right part size OUTPUT PARAMETERS Info - same as in RMatrixSolveM Rep - same as in RMatrixSolveM X - same as in RMatrixSolveM -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure CMatrixMixedSolveM(const A : TComplex2DArray; const LUA : TComplex2DArray; const P : TInteger1DArray; N : AlglibInteger; const B : TComplex2DArray; M : AlglibInteger; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex2DArray);

cmatrixsolve subroutine

(************************************************************************* Dense solver. Same as RMatrixSolve(), but for complex matrices. Algorithm features: * automatic detection of degenerate cases * condition number estimation * iterative refinement * O(N^3) complexity INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure CMatrixSolve(const A : TComplex2DArray; N : AlglibInteger; const B : TComplex1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex1DArray);

cmatrixsolvem subroutine

(************************************************************************* Dense solver. Same as RMatrixSolveM(), but for complex matrices. Algorithm features: * automatic detection of degenerate cases * condition number estimation * iterative refinement * O(N^3+M*N^2) complexity INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A B - array[0..N-1,0..M-1], right part M - right part size RFS - iterative refinement switch: * True - refinement is used. Less performance, more precision. * False - refinement is not used. More performance, less precision. OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure CMatrixSolveM(const A : TComplex2DArray; N : AlglibInteger; const B : TComplex2DArray; M : AlglibInteger; RFS : Boolean; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex2DArray);

hpdmatrixcholeskysolve subroutine

(************************************************************************* Dense solver. Same as RMatrixLUSolve(), but for HPD matrices represented by their Cholesky decomposition. Algorithm features: * automatic detection of degenerate cases * O(N^2) complexity * condition number estimation * matrix is represented by its upper or lower triangle No iterative refinement is provided because such partial representation of matrix does not allow efficient calculation of extra-precise matrix-vector products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS CHA - array[0..N-1,0..N-1], Cholesky decomposition, SPDMatrixCholesky result N - size of A IsUpper - what half of CHA is provided B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure HPDMatrixCholeskySolve(const CHA : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; const B : TComplex1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex1DArray);

hpdmatrixcholeskysolvem subroutine

(************************************************************************* Dense solver. Same as RMatrixLUSolveM(), but for HPD matrices represented by their Cholesky decomposition. Algorithm features: * automatic detection of degenerate cases * O(M*N^2) complexity * condition number estimation * matrix is represented by its upper or lower triangle No iterative refinement is provided because such partial representation of matrix does not allow efficient calculation of extra-precise matrix-vector products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS CHA - array[0..N-1,0..N-1], Cholesky decomposition, HPDMatrixCholesky result N - size of CHA IsUpper - what half of CHA is provided B - array[0..N-1,0..M-1], right part M - right part size OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure HPDMatrixCholeskySolveM(const CHA : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; const B : TComplex2DArray; M : AlglibInteger; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex2DArray);

hpdmatrixsolve subroutine

(************************************************************************* Dense solver. Same as RMatrixSolve(), but for Hermitian positive definite matrices. Algorithm features: * automatic detection of degenerate cases * condition number estimation * O(N^3) complexity * matrix is represented by its upper or lower triangle No iterative refinement is provided because such partial representation of matrix does not allow efficient calculation of extra-precise matrix-vector products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A IsUpper - what half of A is provided B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolve Returns -3 for non-HPD matrices. Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure HPDMatrixSolve(const A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; const B : TComplex1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex1DArray);

hpdmatrixsolvem subroutine

(************************************************************************* Dense solver. Same as RMatrixSolveM(), but for Hermitian positive definite matrices. Algorithm features: * automatic detection of degenerate cases * condition number estimation * O(N^3+M*N^2) complexity * matrix is represented by its upper or lower triangle No iterative refinement is provided because such partial representation of matrix does not allow efficient calculation of extra-precise matrix-vector products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A IsUpper - what half of A is provided B - array[0..N-1,0..M-1], right part M - right part size OUTPUT PARAMETERS Info - same as in RMatrixSolve. Returns -3 for non-HPD matrices. Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure HPDMatrixSolveM(const A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; const B : TComplex2DArray; M : AlglibInteger; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TComplex2DArray);

rmatrixlusolve subroutine

(************************************************************************* Dense solver. This subroutine solves a system A*X=B, where A is NxN non-denegerate real matrix given by its LU decomposition, X and B are NxM real matrices. Algorithm features: * automatic detection of degenerate cases * O(N^2) complexity * condition number estimation No iterative refinement is provided because exact form of original matrix is not known to subroutine. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result P - array[0..N-1], pivots array, RMatrixLU result N - size of A B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure RMatrixLUSolve(const LUA : TReal2DArray; const P : TInteger1DArray; N : AlglibInteger; const B : TReal1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal1DArray);

rmatrixlusolvem subroutine

(************************************************************************* Dense solver. Similar to RMatrixLUSolve() but solves task with multiple right parts (where b and x are NxM matrices). Algorithm features: * automatic detection of degenerate cases * O(M*N^2) complexity * condition number estimation No iterative refinement is provided because exact form of original matrix is not known to subroutine. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result P - array[0..N-1], pivots array, RMatrixLU result N - size of A B - array[0..N-1,0..M-1], right part M - right part size OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure RMatrixLUSolveM(const LUA : TReal2DArray; const P : TInteger1DArray; N : AlglibInteger; const B : TReal2DArray; M : AlglibInteger; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal2DArray);

rmatrixmixedsolve subroutine

(************************************************************************* Dense solver. This subroutine solves a system A*x=b, where BOTH ORIGINAL A AND ITS LU DECOMPOSITION ARE KNOWN. You can use it if for some reasons you have both A and its LU decomposition. Algorithm features: * automatic detection of degenerate cases * condition number estimation * iterative refinement * O(N^2) complexity INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result P - array[0..N-1], pivots array, RMatrixLU result N - size of A B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolveM Rep - same as in RMatrixSolveM X - same as in RMatrixSolveM -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure RMatrixMixedSolve(const A : TReal2DArray; const LUA : TReal2DArray; const P : TInteger1DArray; N : AlglibInteger; const B : TReal1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal1DArray);

rmatrixmixedsolvem subroutine

(************************************************************************* Dense solver. Similar to RMatrixMixedSolve() but solves task with multiple right parts (where b and x are NxM matrices). Algorithm features: * automatic detection of degenerate cases * condition number estimation * iterative refinement * O(M*N^2) complexity INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix LUA - array[0..N-1,0..N-1], LU decomposition, RMatrixLU result P - array[0..N-1], pivots array, RMatrixLU result N - size of A B - array[0..N-1,0..M-1], right part M - right part size OUTPUT PARAMETERS Info - same as in RMatrixSolveM Rep - same as in RMatrixSolveM X - same as in RMatrixSolveM -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure RMatrixMixedSolveM(const A : TReal2DArray; const LUA : TReal2DArray; const P : TInteger1DArray; N : AlglibInteger; const B : TReal2DArray; M : AlglibInteger; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal2DArray);

rmatrixsolve subroutine

(************************************************************************* Dense solver. This subroutine solves a system A*x=b, where A is NxN non-denegerate real matrix, x and b are vectors. Algorithm features: * automatic detection of degenerate cases * condition number estimation * iterative refinement * O(N^3) complexity INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A B - array[0..N-1], right part OUTPUT PARAMETERS Info - return code: * -3 A is singular, or VERY close to singular. X is filled by zeros in such cases. * -1 N<=0 was passed * 1 task is solved (but matrix A may be ill-conditioned, check R1/RInf parameters for condition numbers). Rep - solver report, see below for more info X - array[0..N-1], it contains: * solution of A*x=b if A is non-singular (well-conditioned or ill-conditioned, but not very close to singular) * zeros, if A is singular or VERY close to singular (in this case Info=-3). SOLVER REPORT Subroutine sets following fields of the Rep structure: * R1 reciprocal of condition number: 1/cond(A), 1-norm. * RInf reciprocal of condition number: 1/cond(A), inf-norm. -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure RMatrixSolve(const A : TReal2DArray; N : AlglibInteger; const B : TReal1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal1DArray);

rmatrixsolvels subroutine

(************************************************************************* Dense solver. This subroutine finds solution of the linear system A*X=B with non-square, possibly degenerate A. System is solved in the least squares sense, and general least squares solution X = X0 + CX*y which minimizes |A*X-B| is returned. If A is non-degenerate, solution in the usual sense is returned Algorithm features: * automatic detection of degenerate cases * iterative refinement * O(N^3) complexity INPUT PARAMETERS A - array[0..NRows-1,0..NCols-1], system matrix NRows - vertical size of A NCols - horizontal size of A B - array[0..NCols-1], right part Threshold- a number in [0,1]. Singular values beyond Threshold are considered zero. Set it to 0.0, if you don't understand what it means, so the solver will choose good value on its own. OUTPUT PARAMETERS Info - return code: * -4 SVD subroutine failed * -1 if NRows<=0 or NCols<=0 or Threshold<0 was passed * 1 if task is solved Rep - solver report, see below for more info X - array[0..N-1,0..M-1], it contains: * solution of A*X=B if A is non-singular (well-conditioned or ill-conditioned, but not very close to singular) * zeros, if A is singular or VERY close to singular (in this case Info=-3). SOLVER REPORT Subroutine sets following fields of the Rep structure: * R2 reciprocal of condition number: 1/cond(A), 2-norm. * N = NCols * K dim(Null(A)) * CX array[0..N-1,0..K-1], kernel of A. Columns of CX store such vectors that A*CX[i]=0. -- ALGLIB -- Copyright 24.08.2009 by Bochkanov Sergey *************************************************************************)
procedure RMatrixSolveLS(const A : TReal2DArray; NRows : AlglibInteger; NCols : AlglibInteger; const B : TReal1DArray; Threshold : Double; var Info : AlglibInteger; var Rep : DenseSolverLSReport; var X : TReal1DArray);

rmatrixsolvem subroutine

(************************************************************************* Dense solver. Similar to RMatrixSolve() but solves task with multiple right parts (where b and x are NxM matrices). Algorithm features: * automatic detection of degenerate cases * condition number estimation * optional iterative refinement * O(N^3+M*N^2) complexity INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A B - array[0..N-1,0..M-1], right part M - right part size RFS - iterative refinement switch: * True - refinement is used. Less performance, more precision. * False - refinement is not used. More performance, less precision. OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure RMatrixSolveM(const A : TReal2DArray; N : AlglibInteger; const B : TReal2DArray; M : AlglibInteger; RFS : Boolean; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal2DArray);

spdmatrixcholeskysolve subroutine

(************************************************************************* Dense solver. Same as RMatrixLUSolve(), but for SPD matrices represented by their Cholesky decomposition. Algorithm features: * automatic detection of degenerate cases * O(N^2) complexity * condition number estimation * matrix is represented by its upper or lower triangle No iterative refinement is provided because such partial representation of matrix does not allow efficient calculation of extra-precise matrix-vector products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS CHA - array[0..N-1,0..N-1], Cholesky decomposition, SPDMatrixCholesky result N - size of A IsUpper - what half of CHA is provided B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure SPDMatrixCholeskySolve(const CHA : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; const B : TReal1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal1DArray);

spdmatrixcholeskysolvem subroutine

(************************************************************************* Dense solver. Same as RMatrixLUSolveM(), but for SPD matrices represented by their Cholesky decomposition. Algorithm features: * automatic detection of degenerate cases * O(M*N^2) complexity * condition number estimation * matrix is represented by its upper or lower triangle No iterative refinement is provided because such partial representation of matrix does not allow efficient calculation of extra-precise matrix-vector products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS CHA - array[0..N-1,0..N-1], Cholesky decomposition, SPDMatrixCholesky result N - size of CHA IsUpper - what half of CHA is provided B - array[0..N-1,0..M-1], right part M - right part size OUTPUT PARAMETERS Info - same as in RMatrixSolve Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure SPDMatrixCholeskySolveM(const CHA : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; const B : TReal2DArray; M : AlglibInteger; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal2DArray);

spdmatrixsolve subroutine

(************************************************************************* Dense solver. Same as RMatrixSolve(), but for SPD matrices. Algorithm features: * automatic detection of degenerate cases * condition number estimation * O(N^3) complexity * matrix is represented by its upper or lower triangle No iterative refinement is provided because such partial representation of matrix does not allow efficient calculation of extra-precise matrix-vector products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A IsUpper - what half of A is provided B - array[0..N-1], right part OUTPUT PARAMETERS Info - same as in RMatrixSolve Returns -3 for non-SPD matrices. Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure SPDMatrixSolve(const A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; const B : TReal1DArray; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal1DArray);

spdmatrixsolvem subroutine

(************************************************************************* Dense solver. Same as RMatrixSolveM(), but for symmetric positive definite matrices. Algorithm features: * automatic detection of degenerate cases * condition number estimation * O(N^3+M*N^2) complexity * matrix is represented by its upper or lower triangle No iterative refinement is provided because such partial representation of matrix does not allow efficient calculation of extra-precise matrix-vector products for large matrices. Use RMatrixSolve or RMatrixMixedSolve if you need iterative refinement. INPUT PARAMETERS A - array[0..N-1,0..N-1], system matrix N - size of A IsUpper - what half of A is provided B - array[0..N-1,0..M-1], right part M - right part size OUTPUT PARAMETERS Info - same as in RMatrixSolve. Returns -3 for non-SPD matrices. Rep - same as in RMatrixSolve X - same as in RMatrixSolve -- ALGLIB -- Copyright 27.01.2010 by Bochkanov Sergey *************************************************************************)
procedure SPDMatrixSolveM(const A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; const B : TReal2DArray; M : AlglibInteger; var Info : AlglibInteger; var Rep : DenseSolverReport; var X : TReal2DArray);

descriptivestatistics unit

Subroutines

calculateadev
calculatemedian
calculatemoments
calculatepercentile

calculateadev subroutine

(************************************************************************* ADev Input parameters: X - sample (array indexes: [0..N-1]) N - sample size Output parameters: ADev- ADev -- ALGLIB -- Copyright 06.09.2006 by Bochkanov Sergey *************************************************************************)
procedure CalculateADev(const X : TReal1DArray; N : AlglibInteger; var ADev : Double);

calculatemedian subroutine

(************************************************************************* Median calculation. Input parameters: X - sample (array indexes: [0..N-1]) N - sample size Output parameters: Median -- ALGLIB -- Copyright 06.09.2006 by Bochkanov Sergey *************************************************************************)
procedure CalculateMedian(X : TReal1DArray; N : AlglibInteger; var Median : Double);

calculatemoments subroutine

(************************************************************************* Calculation of the distribution moments: mean, variance, slewness, kurtosis. Input parameters: X - sample. Array with whose indexes range within [0..N-1] N - sample size. Output parameters: Mean - mean. Variance- variance. Skewness- skewness (if variance<>0; zero otherwise). Kurtosis- kurtosis (if variance<>0; zero otherwise). -- ALGLIB -- Copyright 06.09.2006 by Bochkanov Sergey *************************************************************************)
procedure CalculateMoments(const X : TReal1DArray; N : AlglibInteger; var Mean : Double; var Variance : Double; var Skewness : Double; var Kurtosis : Double);

calculatepercentile subroutine

(************************************************************************* Percentile calculation. Input parameters: X - sample (array indexes: [0..N-1]) N - sample size, N>1 P - percentile (0<=P<=1) Output parameters: V - percentile -- ALGLIB -- Copyright 01.03.2008 by Bochkanov Sergey *************************************************************************)
procedure CalculatePercentile(X : TReal1DArray; N : AlglibInteger; P : Double; var V : Double);

dforest unit

Subroutines

dfavgce
dfavgerror
dfavgrelerror
dfbuildrandomdecisionforest
dfcopy
dfprocess
dfrelclserror
dfrmserror
dfserialize
dfunserialize

dfavgce subroutine

(************************************************************************* Average cross-entropy (in bits per element) on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: CrossEntropy/(NPoints*LN(2)). Zero if model solves regression task. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************)
function DFAvgCE(const DF : DecisionForest; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

dfavgerror subroutine

(************************************************************************* Average error on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: Its meaning for regression task is obvious. As for classification task, it means average error when estimating posterior probabilities. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************)
function DFAvgError(const DF : DecisionForest; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

dfavgrelerror subroutine

(************************************************************************* Average relative error on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: Its meaning for regression task is obvious. As for classification task, it means average relative error when estimating posterior probability of belonging to the correct class. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************)
function DFAvgRelError(const DF : DecisionForest; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

dfbuildrandomdecisionforest subroutine

(************************************************************************* This subroutine builds random decision forest. INPUT PARAMETERS: XY - training set NPoints - training set size, NPoints>=1 NVars - number of independent variables, NVars>=1 NClasses - task type: * NClasses=1 - regression task with one dependent variable * NClasses>1 - classification task with NClasses classes. NTrees - number of trees in a forest, NTrees>=1. recommended values: 50-100. R - percent of a training set used to build individual trees. 0<R<=1. recommended values: 0.1 <= R <= 0.66. OUTPUT PARAMETERS: Info - return code: * -2, if there is a point with class number outside of [0..NClasses-1]. * -1, if incorrect parameters was passed (NPoints<1, NVars<1, NClasses<1, NTrees<1, R<=0 or R>1). * 1, if task has been solved DF - model built Rep - training report, contains error on a training set and out-of-bag estimates of generalization error. -- ALGLIB -- Copyright 19.02.2009 by Bochkanov Sergey *************************************************************************)
procedure DFBuildRandomDecisionForest(const XY : TReal2DArray; NPoints : AlglibInteger; NVars : AlglibInteger; NClasses : AlglibInteger; NTrees : AlglibInteger; R : Double; var Info : AlglibInteger; var DF : DecisionForest; var Rep : DFReport);

dfcopy subroutine

(************************************************************************* Copying of DecisionForest strucure INPUT PARAMETERS: DF1 - original OUTPUT PARAMETERS: DF2 - copy -- ALGLIB -- Copyright 13.02.2009 by Bochkanov Sergey *************************************************************************)
procedure DFCopy(const DF1 : DecisionForest; var DF2 : DecisionForest);

dfprocess subroutine

(************************************************************************* Procesing INPUT PARAMETERS: DF - decision forest model X - input vector, array[0..NVars-1]. OUTPUT PARAMETERS: Y - result. Regression estimate when solving regression task, vector of posterior probabilities for classification task. Subroutine does not allocate memory for this vector, it is responsibility of a caller to allocate it. Array must be at least [0..NClasses-1]. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************)
procedure DFProcess(const DF : DecisionForest; const X : TReal1DArray; var Y : TReal1DArray);

dfrelclserror subroutine

(************************************************************************* Relative classification error on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: percent of incorrectly classified cases. Zero if model solves regression task. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************)
function DFRelClsError(const DF : DecisionForest; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

dfrmserror subroutine

(************************************************************************* RMS error on the test set INPUT PARAMETERS: DF - decision forest model XY - test set NPoints - test set size RESULT: root mean square error. Its meaning for regression task is obvious. As for classification task, RMS error means error when estimating posterior probabilities. -- ALGLIB -- Copyright 16.02.2009 by Bochkanov Sergey *************************************************************************)
function DFRMSError(const DF : DecisionForest; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

dfserialize subroutine

(************************************************************************* Serialization of DecisionForest strucure INPUT PARAMETERS: DF - original OUTPUT PARAMETERS: RA - array of real numbers which stores decision forest, array[0..RLen-1] RLen - RA lenght -- ALGLIB -- Copyright 13.02.2009 by Bochkanov Sergey *************************************************************************)
procedure DFSerialize(const DF : DecisionForest; var RA : TReal1DArray; var RLen : AlglibInteger);

dfunserialize subroutine

(************************************************************************* Unserialization of DecisionForest strucure INPUT PARAMETERS: RA - real array which stores decision forest OUTPUT PARAMETERS: DF - restored structure -- ALGLIB -- Copyright 13.02.2009 by Bochkanov Sergey *************************************************************************)
procedure DFUnserialize(const RA : TReal1DArray; var DF : DecisionForest);

elliptic unit

Subroutines

ellipticintegrale
ellipticintegralk
ellipticintegralkhighprecision
incompleteellipticintegrale
incompleteellipticintegralk

ellipticintegrale subroutine

(************************************************************************* Complete elliptic integral of the second kind Approximates the integral pi/2 - | | 2 E(m) = | sqrt( 1 - m sin t ) dt | | - 0 using the approximation P(x) - x log x Q(x). ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0, 1 10000 2.1e-16 7.3e-17 Cephes Math Library, Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier *************************************************************************)
function EllipticIntegralE(m : Double):Double;

ellipticintegralk subroutine

(************************************************************************* Complete elliptic integral of the first kind Approximates the integral pi/2 - | | | dt K(m) = | ------------------ | 2 | | sqrt( 1 - m sin t ) - 0 using the approximation P(x) - log x Q(x). ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,1 30000 2.5e-16 6.8e-17 Cephes Math Library, Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function EllipticIntegralK(m : Double):Double;

ellipticintegralkhighprecision subroutine

(************************************************************************* Complete elliptic integral of the first kind Approximates the integral pi/2 - | | | dt K(m) = | ------------------ | 2 | | sqrt( 1 - m sin t ) - 0 where m = 1 - m1, using the approximation P(x) - log x Q(x). The argument m1 is used rather than m so that the logarithmic singularity at m = 1 will be shifted to the origin; this preserves maximum accuracy. K(0) = pi/2. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,1 30000 2.5e-16 6.8e-17 Àëãîðèòì âçÿò èç áèáëèîòåêè Cephes *************************************************************************)
function EllipticIntegralKHighPrecision(m1 : Double):Double;

incompleteellipticintegrale subroutine

(************************************************************************* Incomplete elliptic integral of the second kind Approximates the integral phi - | | | 2 E(phi_\m) = | sqrt( 1 - m sin t ) dt | | | - 0 of amplitude phi and modulus m, using the arithmetic - geometric mean algorithm. ACCURACY: Tested at random arguments with phi in [-10, 10] and m in [0, 1]. Relative error: arithmetic domain # trials peak rms IEEE -10,10 150000 3.3e-15 1.4e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1993, 2000 by Stephen L. Moshier *************************************************************************)
function IncompleteEllipticIntegralE(phi : Double; m : Double):Double;

incompleteellipticintegralk subroutine

(************************************************************************* Incomplete elliptic integral of the first kind F(phi|m) Approximates the integral phi - | | | dt F(phi_\m) = | ------------------ | 2 | | sqrt( 1 - m sin t ) - 0 of amplitude phi and modulus m, using the arithmetic - geometric mean algorithm. ACCURACY: Tested at random points with m in [0, 1] and phi as indicated. Relative error: arithmetic domain # trials peak rms IEEE -10,10 200000 7.4e-16 1.0e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function IncompleteEllipticIntegralK(phi : Double; m : Double):Double;

evd unit

Subroutines

hmatrixevd
hmatrixevdi
hmatrixevdr
rmatrixevd
smatrixevd
smatrixevdi
smatrixevdr
smatrixtdevd
smatrixtdevdi
smatrixtdevdr

hmatrixevd subroutine

(************************************************************************* Finding the eigenvalues and eigenvectors of a Hermitian matrix The algorithm finds eigen pairs of a Hermitian matrix by reducing it to real tridiagonal form and using the QL/QR algorithm. Input parameters: A - Hermitian matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - storage format. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not returned; * 1, the eigenvectors are returned. Output parameters: D - eigenvalues in ascending order. Array whose index ranges within [0..N-1]. Z - if ZNeeded is equal to: * 0, Z hasn’t changed; * 1, Z contains the eigenvectors. Array whose indexes range within [0..N-1, 0..N-1]. The eigenvectors are stored in the matrix columns. Result: True, if the algorithm has converged. False, if the algorithm hasn't converged (rare case). Note: eigenvectors of Hermitian matrix are defined up to multiplication by a complex number L, such that |L|=1. -- ALGLIB -- Copyright 2005, 23 March 2007 by Bochkanov Sergey *************************************************************************)
function HMatrixEVD(A : TComplex2DArray; N : AlglibInteger; ZNeeded : AlglibInteger; IsUpper : Boolean; var D : TReal1DArray; var Z : TComplex2DArray):Boolean;

hmatrixevdi subroutine

(************************************************************************* Subroutine for finding the eigenvalues and eigenvectors of a Hermitian matrix with given indexes by using bisection and inverse iteration methods Input parameters: A - Hermitian matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not returned; * 1, the eigenvectors are returned. IsUpperA - storage format of matrix A. I1, I2 - index interval for searching (from I1 to I2). 0 <= I1 <= I2 <= N-1. Output parameters: W - array of the eigenvalues found. Array whose index ranges within [0..I2-I1]. Z - if ZNeeded is equal to: * 0, Z hasn’t changed; * 1, Z contains eigenvectors. Array whose indexes range within [0..N-1, 0..I2-I1]. In that case, the eigenvectors are stored in the matrix columns. Result: True, if successful. W contains the eigenvalues, Z contains the eigenvectors (if needed). False, if the bisection method subroutine wasn't able to find the eigenvalues in the given interval or if the inverse iteration subroutine wasn't able to find all the corresponding eigenvectors. In that case, the eigenvalues and eigenvectors are not returned. Note: eigen vectors of Hermitian matrix are defined up to multiplication by a complex number L, such as |L|=1. -- ALGLIB -- Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey. *************************************************************************)
function HMatrixEVDI(A : TComplex2DArray; N : AlglibInteger; ZNeeded : AlglibInteger; IsUpper : Boolean; I1 : AlglibInteger; I2 : AlglibInteger; var W : TReal1DArray; var Z : TComplex2DArray):Boolean;

hmatrixevdr subroutine

(************************************************************************* Subroutine for finding the eigenvalues (and eigenvectors) of a Hermitian matrix in a given half-interval (A, B] by using a bisection and inverse iteration Input parameters: A - Hermitian matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not returned; * 1, the eigenvectors are returned. IsUpperA - storage format of matrix A. B1, B2 - half-interval (B1, B2] to search eigenvalues in. Output parameters: M - number of eigenvalues found in a given half-interval, M>=0 W - array of the eigenvalues found. Array whose index ranges within [0..M-1]. Z - if ZNeeded is equal to: * 0, Z hasn’t changed; * 1, Z contains eigenvectors. Array whose indexes range within [0..N-1, 0..M-1]. The eigenvectors are stored in the matrix columns. Result: True, if successful. M contains the number of eigenvalues in the given half-interval (could be equal to 0), W contains the eigenvalues, Z contains the eigenvectors (if needed). False, if the bisection method subroutine wasn't able to find the eigenvalues in the given interval or if the inverse iteration subroutine wasn't able to find all the corresponding eigenvectors. In that case, the eigenvalues and eigenvectors are not returned, M is equal to 0. Note: eigen vectors of Hermitian matrix are defined up to multiplication by a complex number L, such as |L|=1. -- ALGLIB -- Copyright 07.01.2006, 24.03.2007 by Bochkanov Sergey. *************************************************************************)
function HMatrixEVDR(A : TComplex2DArray; N : AlglibInteger; ZNeeded : AlglibInteger; IsUpper : Boolean; B1 : Double; B2 : Double; var M : AlglibInteger; var W : TReal1DArray; var Z : TComplex2DArray):Boolean;

rmatrixevd subroutine

(************************************************************************* Finding eigenvalues and eigenvectors of a general matrix The algorithm finds eigenvalues and eigenvectors of a general matrix by using the QR algorithm with multiple shifts. The algorithm can find eigenvalues and both left and right eigenvectors. The right eigenvector is a vector x such that A*x = w*x, and the left eigenvector is a vector y such that y'*A = w*y' (here y' implies a complex conjugate transposition of vector y). Input parameters: A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. VNeeded - flag controlling whether eigenvectors are needed or not. If VNeeded is equal to: * 0, eigenvectors are not returned; * 1, right eigenvectors are returned; * 2, left eigenvectors are returned; * 3, both left and right eigenvectors are returned. Output parameters: WR - real parts of eigenvalues. Array whose index ranges within [0..N-1]. WR - imaginary parts of eigenvalues. Array whose index ranges within [0..N-1]. VL, VR - arrays of left and right eigenvectors (if they are needed). If WI[i]=0, the respective eigenvalue is a real number, and it corresponds to the column number I of matrices VL/VR. If WI[i]>0, we have a pair of complex conjugate numbers with positive and negative imaginary parts: the first eigenvalue WR[i] + sqrt(-1)*WI[i]; the second eigenvalue WR[i+1] + sqrt(-1)*WI[i+1]; WI[i]>0 WI[i+1] = -WI[i] < 0 In that case, the eigenvector corresponding to the first eigenvalue is located in i and i+1 columns of matrices VL/VR (the column number i contains the real part, and the column number i+1 contains the imaginary part), and the vector corresponding to the second eigenvalue is a complex conjugate to the first vector. Arrays whose indexes range within [0..N-1, 0..N-1]. Result: True, if the algorithm has converged. False, if the algorithm has not converged. Note 1: Some users may ask the following question: what if WI[N-1]>0? WI[N] must contain an eigenvalue which is complex conjugate to the N-th eigenvalue, but the array has only size N? The answer is as follows: such a situation cannot occur because the algorithm finds a pairs of eigenvalues, therefore, if WI[i]>0, I is strictly less than N-1. Note 2: The algorithm performance depends on the value of the internal parameter NS of the InternalSchurDecomposition subroutine which defines the number of shifts in the QR algorithm (similarly to the block width in block-matrix algorithms of linear algebra). If you require maximum performance on your machine, it is recommended to adjust this parameter manually. See also the InternalTREVC subroutine. The algorithm is based on the LAPACK 3.0 library. *************************************************************************)
function RMatrixEVD(A : TReal2DArray; N : AlglibInteger; VNeeded : AlglibInteger; var WR : TReal1DArray; var WI : TReal1DArray; var VL : TReal2DArray; var VR : TReal2DArray):Boolean;

smatrixevd subroutine

(************************************************************************* Finding the eigenvalues and eigenvectors of a symmetric matrix The algorithm finds eigen pairs of a symmetric matrix by reducing it to tridiagonal form and using the QL/QR algorithm. Input parameters: A - symmetric matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - storage format. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not returned; * 1, the eigenvectors are returned. Output parameters: D - eigenvalues in ascending order. Array whose index ranges within [0..N-1]. Z - if ZNeeded is equal to: * 0, Z hasn’t changed; * 1, Z contains the eigenvectors. Array whose indexes range within [0..N-1, 0..N-1]. The eigenvectors are stored in the matrix columns. Result: True, if the algorithm has converged. False, if the algorithm hasn't converged (rare case). -- ALGLIB -- Copyright 2005-2008 by Bochkanov Sergey *************************************************************************)
function SMatrixEVD(A : TReal2DArray; N : AlglibInteger; ZNeeded : AlglibInteger; IsUpper : Boolean; var D : TReal1DArray; var Z : TReal2DArray):Boolean;

smatrixevdi subroutine

(************************************************************************* Subroutine for finding the eigenvalues and eigenvectors of a symmetric matrix with given indexes by using bisection and inverse iteration methods. Input parameters: A - symmetric matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not returned; * 1, the eigenvectors are returned. IsUpperA - storage format of matrix A. I1, I2 - index interval for searching (from I1 to I2). 0 <= I1 <= I2 <= N-1. Output parameters: W - array of the eigenvalues found. Array whose index ranges within [0..I2-I1]. Z - if ZNeeded is equal to: * 0, Z hasn’t changed; * 1, Z contains eigenvectors. Array whose indexes range within [0..N-1, 0..I2-I1]. In that case, the eigenvectors are stored in the matrix columns. Result: True, if successful. W contains the eigenvalues, Z contains the eigenvectors (if needed). False, if the bisection method subroutine wasn't able to find the eigenvalues in the given interval or if the inverse iteration subroutine wasn't able to find all the corresponding eigenvectors. In that case, the eigenvalues and eigenvectors are not returned. -- ALGLIB -- Copyright 07.01.2006 by Bochkanov Sergey *************************************************************************)
function SMatrixEVDI(A : TReal2DArray; N : AlglibInteger; ZNeeded : AlglibInteger; IsUpper : Boolean; I1 : AlglibInteger; I2 : AlglibInteger; var W : TReal1DArray; var Z : TReal2DArray):Boolean;

smatrixevdr subroutine

(************************************************************************* Subroutine for finding the eigenvalues (and eigenvectors) of a symmetric matrix in a given half open interval (A, B] by using a bisection and inverse iteration Input parameters: A - symmetric matrix which is given by its upper or lower triangular part. Array [0..N-1, 0..N-1]. N - size of matrix A. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not returned; * 1, the eigenvectors are returned. IsUpperA - storage format of matrix A. B1, B2 - half open interval (B1, B2] to search eigenvalues in. Output parameters: M - number of eigenvalues found in a given half-interval (M>=0). W - array of the eigenvalues found. Array whose index ranges within [0..M-1]. Z - if ZNeeded is equal to: * 0, Z hasn’t changed; * 1, Z contains eigenvectors. Array whose indexes range within [0..N-1, 0..M-1]. The eigenvectors are stored in the matrix columns. Result: True, if successful. M contains the number of eigenvalues in the given half-interval (could be equal to 0), W contains the eigenvalues, Z contains the eigenvectors (if needed). False, if the bisection method subroutine wasn't able to find the eigenvalues in the given interval or if the inverse iteration subroutine wasn't able to find all the corresponding eigenvectors. In that case, the eigenvalues and eigenvectors are not returned, M is equal to 0. -- ALGLIB -- Copyright 07.01.2006 by Bochkanov Sergey *************************************************************************)
function SMatrixEVDR(A : TReal2DArray; N : AlglibInteger; ZNeeded : AlglibInteger; IsUpper : Boolean; B1 : Double; B2 : Double; var M : AlglibInteger; var W : TReal1DArray; var Z : TReal2DArray):Boolean;

smatrixtdevd subroutine

(************************************************************************* Finding the eigenvalues and eigenvectors of a tridiagonal symmetric matrix The algorithm finds the eigen pairs of a tridiagonal symmetric matrix by using an QL/QR algorithm with implicit shifts. Input parameters: D - the main diagonal of a tridiagonal matrix. Array whose index ranges within [0..N-1]. E - the secondary diagonal of a tridiagonal matrix. Array whose index ranges within [0..N-2]. N - size of matrix A. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not needed; * 1, the eigenvectors of a tridiagonal matrix are multiplied by the square matrix Z. It is used if the tridiagonal matrix is obtained by the similarity transformation of a symmetric matrix; * 2, the eigenvectors of a tridiagonal matrix replace the square matrix Z; * 3, matrix Z contains the first row of the eigenvectors matrix. Z - if ZNeeded=1, Z contains the square matrix by which the eigenvectors are multiplied. Array whose indexes range within [0..N-1, 0..N-1]. Output parameters: D - eigenvalues in ascending order. Array whose index ranges within [0..N-1]. Z - if ZNeeded is equal to: * 0, Z hasn’t changed; * 1, Z contains the product of a given matrix (from the left) and the eigenvectors matrix (from the right); * 2, Z contains the eigenvectors. * 3, Z contains the first row of the eigenvectors matrix. If ZNeeded<3, Z is the array whose indexes range within [0..N-1, 0..N-1]. In that case, the eigenvectors are stored in the matrix columns. If ZNeeded=3, Z is the array whose indexes range within [0..0, 0..N-1]. Result: True, if the algorithm has converged. False, if the algorithm hasn't converged. -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 *************************************************************************)
function SMatrixTDEVD(var D : TReal1DArray; E : TReal1DArray; N : AlglibInteger; ZNeeded : AlglibInteger; var Z : TReal2DArray):Boolean;

smatrixtdevdi subroutine

(************************************************************************* Subroutine for finding tridiagonal matrix eigenvalues/vectors with given indexes (in ascending order) by using the bisection and inverse iteraion. Input parameters: D - the main diagonal of a tridiagonal matrix. Array whose index ranges within [0..N-1]. E - the secondary diagonal of a tridiagonal matrix. Array whose index ranges within [0..N-2]. N - size of matrix. N>=0. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not needed; * 1, the eigenvectors of a tridiagonal matrix are multiplied by the square matrix Z. It is used if the tridiagonal matrix is obtained by the similarity transformation of a symmetric matrix. * 2, the eigenvectors of a tridiagonal matrix replace matrix Z. I1, I2 - index interval for searching (from I1 to I2). 0 <= I1 <= I2 <= N-1. Z - if ZNeeded is equal to: * 0, Z isn't used and remains unchanged; * 1, Z contains the square matrix (array whose indexes range within [0..N-1, 0..N-1]) which reduces the given symmetric matrix to tridiagonal form; * 2, Z isn't used (but changed on the exit). Output parameters: D - array of the eigenvalues found. Array whose index ranges within [0..I2-I1]. Z - if ZNeeded is equal to: * 0, doesn't contain any information; * 1, contains the product of a given NxN matrix Z (from the left) and Nx(I2-I1) matrix of the eigenvectors found (from the right). Array whose indexes range within [0..N-1, 0..I2-I1]. * 2, contains the matrix of the eigenvalues found. Array whose indexes range within [0..N-1, 0..I2-I1]. Result: True, if successful. In that case, D contains the eigenvalues, Z contains the eigenvectors (if needed). It should be noted that the subroutine changes the size of arrays D and Z. False, if the bisection method subroutine wasn't able to find the eigenvalues in the given interval or if the inverse iteration subroutine wasn't able to find all the corresponding eigenvectors. In that case, the eigenvalues and eigenvectors are not returned. -- ALGLIB -- Copyright 25.12.2005 by Bochkanov Sergey *************************************************************************)
function SMatrixTDEVDI(var D : TReal1DArray; const E : TReal1DArray; N : AlglibInteger; ZNeeded : AlglibInteger; I1 : AlglibInteger; I2 : AlglibInteger; var Z : TReal2DArray):Boolean;

smatrixtdevdr subroutine

(************************************************************************* Subroutine for finding the tridiagonal matrix eigenvalues/vectors in a given half-interval (A, B] by using bisection and inverse iteration. Input parameters: D - the main diagonal of a tridiagonal matrix. Array whose index ranges within [0..N-1]. E - the secondary diagonal of a tridiagonal matrix. Array whose index ranges within [0..N-2]. N - size of matrix, N>=0. ZNeeded - flag controlling whether the eigenvectors are needed or not. If ZNeeded is equal to: * 0, the eigenvectors are not needed; * 1, the eigenvectors of a tridiagonal matrix are multiplied by the square matrix Z. It is used if the tridiagonal matrix is obtained by the similarity transformation of a symmetric matrix. * 2, the eigenvectors of a tridiagonal matrix replace matrix Z. A, B - half-interval (A, B] to search eigenvalues in. Z - if ZNeeded is equal to: * 0, Z isn't used and remains unchanged; * 1, Z contains the square matrix (array whose indexes range within [0..N-1, 0..N-1]) which reduces the given symmetric matrix to tridiagonal form; * 2, Z isn't used (but changed on the exit). Output parameters: D - array of the eigenvalues found. Array whose index ranges within [0..M-1]. M - number of eigenvalues found in the given half-interval (M>=0). Z - if ZNeeded is equal to: * 0, doesn't contain any information; * 1, contains the product of a given NxN matrix Z (from the left) and NxM matrix of the eigenvectors found (from the right). Array whose indexes range within [0..N-1, 0..M-1]. * 2, contains the matrix of the eigenvectors found. Array whose indexes range within [0..N-1, 0..M-1]. Result: True, if successful. In that case, M contains the number of eigenvalues in the given half-interval (could be equal to 0), D contains the eigenvalues, Z contains the eigenvectors (if needed). It should be noted that the subroutine changes the size of arrays D and Z. False, if the bisection method subroutine wasn't able to find the eigenvalues in the given interval or if the inverse iteration subroutine wasn't able to find all the corresponding eigenvectors. In that case, the eigenvalues and eigenvectors are not returned, M is equal to 0. -- ALGLIB -- Copyright 31.03.2008 by Bochkanov Sergey *************************************************************************)
function SMatrixTDEVDR(var D : TReal1DArray; const E : TReal1DArray; N : AlglibInteger; ZNeeded : AlglibInteger; A : Double; B : Double; var M : AlglibInteger; var Z : TReal2DArray):Boolean;

expintegrals unit

Subroutines

exponentialintegralei
exponentialintegralen

exponentialintegralei subroutine

(************************************************************************* Exponential integral Ei(x) x - t | | e Ei(x) = -|- --- dt . | | t - -inf Not defined for x <= 0. See also expn.c. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,100 50000 8.6e-16 1.3e-16 Cephes Math Library Release 2.8: May, 1999 Copyright 1999 by Stephen L. Moshier *************************************************************************)
function ExponentialIntegralEI(X : Double):Double;

exponentialintegralen subroutine

(************************************************************************* Exponential integral En(x) Evaluates the exponential integral inf. - | | -xt | e E (x) = | ---- dt. n | n | | t - 1 Both n and x must be nonnegative. The routine employs either a power series, a continued fraction, or an asymptotic formula depending on the relative values of n and x. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0, 30 10000 1.7e-15 3.6e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1985, 2000 by Stephen L. Moshier *************************************************************************)
function ExponentialIntegralEN(X : Double; N : AlglibInteger):Double;

fdistr unit

Subroutines

fcdistribution
fdistribution
invfdistribution

fcdistribution subroutine

(************************************************************************* Complemented F distribution Returns the area from x to infinity under the F density function (also known as Snedcor's density or the variance ratio density). inf. - 1 | | a-1 b-1 1-P(x) = ------ | t (1-t) dt B(a,b) | | - x The incomplete beta integral is used, according to the formula P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ). ACCURACY: Tested at random points (a,b,x) in the indicated intervals. x a,b Relative error: arithmetic domain domain # trials peak rms IEEE 0,1 1,100 100000 3.7e-14 5.9e-16 IEEE 1,5 1,100 100000 8.0e-15 1.6e-15 IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13 IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function FCDistribution(a : AlglibInteger; b : AlglibInteger; x : Double):Double;

fdistribution subroutine

(************************************************************************* F distribution Returns the area from zero to x under the F density function (also known as Snedcor's density or the variance ratio density). This is the density of x = (u1/df1)/(u2/df2), where u1 and u2 are random variables having Chi square distributions with df1 and df2 degrees of freedom, respectively. The incomplete beta integral is used, according to the formula P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ). The arguments a and b are greater than zero, and x is nonnegative. ACCURACY: Tested at random points (a,b,x). x a,b Relative error: arithmetic domain domain # trials peak rms IEEE 0,1 0,100 100000 9.8e-15 1.7e-15 IEEE 1,5 0,100 100000 6.5e-15 3.5e-16 IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12 IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function FDistribution(a : AlglibInteger; b : AlglibInteger; x : Double):Double;

invfdistribution subroutine

(************************************************************************* Inverse of complemented F distribution Finds the F density argument x such that the integral from x to infinity of the F density is equal to the given probability p. This is accomplished using the inverse beta integral function and the relations z = incbi( df2/2, df1/2, p ) x = df2 (1-z) / (df1 z). Note: the following relations hold for the inverse of the uncomplemented F distribution: z = incbi( df1/2, df2/2, p ) x = df2 z / (df1 (1-z)). ACCURACY: Tested at random points (a,b,p). a,b Relative error: arithmetic domain # trials peak rms For p between .001 and 1: IEEE 1,100 100000 8.3e-15 4.7e-16 IEEE 1,10000 100000 2.1e-11 1.4e-13 For p between 10^-6 and 10^-3: IEEE 1,100 50000 1.3e-12 8.4e-15 IEEE 1,10000 50000 3.0e-12 4.8e-14 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function InvFDistribution(a : AlglibInteger; b : AlglibInteger; y : Double):Double;

fft unit

Subroutines

fftc1d
fftc1dinv
fftr1d
fftr1dinternaleven
fftr1dinv
fftr1dinvinternaleven

fftc1d subroutine

(************************************************************************* 1-dimensional complex FFT. Array size N may be arbitrary number (composite or prime). Composite N's are handled with cache-oblivious variation of a Cooley-Tukey algorithm. Small prime-factors are transformed using hard coded codelets (similar to FFTW codelets, but without low-level optimization), large prime-factors are handled with Bluestein's algorithm. Fastests transforms are for smooth N's (prime factors are 2, 3, 5 only), most fast for powers of 2. When N have prime factors larger than these, but orders of magnitude smaller than N, computations will be about 4 times slower than for nearby highly composite N's. When N itself is prime, speed will be 6 times lower. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - complex function to be transformed N - problem size OUTPUT PARAMETERS A - DFT of a input array, array[0..N-1] A_out[j] = SUM(A_in[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1) -- ALGLIB -- Copyright 29.05.2009 by Bochkanov Sergey *************************************************************************)
procedure FFTC1D(var A : TComplex1DArray; N : AlglibInteger);

fftc1dinv subroutine

(************************************************************************* 1-dimensional complex inverse FFT. Array size N may be arbitrary number (composite or prime). Algorithm has O(N*logN) complexity for any N (composite or prime). See FFTC1D() description for more information about algorithm performance. INPUT PARAMETERS A - array[0..N-1] - complex array to be transformed N - problem size OUTPUT PARAMETERS A - inverse DFT of a input array, array[0..N-1] A_out[j] = SUM(A_in[k]/N*exp(+2*pi*sqrt(-1)*j*k/N), k = 0..N-1) -- ALGLIB -- Copyright 29.05.2009 by Bochkanov Sergey *************************************************************************)
procedure FFTC1DInv(var A : TComplex1DArray; N : AlglibInteger);

fftr1d subroutine

(************************************************************************* 1-dimensional real FFT. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - real function to be transformed N - problem size OUTPUT PARAMETERS F - DFT of a input array, array[0..N-1] F[j] = SUM(A[k]*exp(-2*pi*sqrt(-1)*j*k/N), k = 0..N-1) NOTE: F[] satisfies symmetry property F[k] = conj(F[N-k]), so just one half of array is usually needed. But for convinience subroutine returns full complex array (with frequencies above N/2), so its result may be used by other FFT-related subroutines. -- ALGLIB -- Copyright 01.06.2009 by Bochkanov Sergey *************************************************************************)
procedure FFTR1D(const A : TReal1DArray; N : AlglibInteger; var F : TComplex1DArray);

fftr1dinternaleven subroutine

(************************************************************************* Internal subroutine. Never call it directly! -- ALGLIB -- Copyright 01.06.2009 by Bochkanov Sergey *************************************************************************)
procedure FFTR1DInternalEven(var A : TReal1DArray; N : AlglibInteger; var Buf : TReal1DArray; var Plan : FTPlan);

fftr1dinv subroutine

(************************************************************************* 1-dimensional real inverse FFT. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS F - array[0..floor(N/2)] - frequencies from forward real FFT N - problem size OUTPUT PARAMETERS A - inverse DFT of a input array, array[0..N-1] NOTE: F[] should satisfy symmetry property F[k] = conj(F[N-k]), so just one half of frequencies array is needed - elements from 0 to floor(N/2). F[0] is ALWAYS real. If N is even F[floor(N/2)] is real too. If N is odd, then F[floor(N/2)] has no special properties. Relying on properties noted above, FFTR1DInv subroutine uses only elements from 0th to floor(N/2)-th. It ignores imaginary part of F[0], and in case N is even it ignores imaginary part of F[floor(N/2)] too. So you can pass either frequencies array with N elements or reduced array with roughly N/2 elements - subroutine will successfully transform both. -- ALGLIB -- Copyright 01.06.2009 by Bochkanov Sergey *************************************************************************)
procedure FFTR1DInv(const F : TComplex1DArray; N : AlglibInteger; var A : TReal1DArray);

fftr1dinvinternaleven subroutine

(************************************************************************* Internal subroutine. Never call it directly! -- ALGLIB -- Copyright 01.06.2009 by Bochkanov Sergey *************************************************************************)
procedure FFTR1DInvInternalEven(var A : TReal1DArray; N : AlglibInteger; var Buf : TReal1DArray; var Plan : FTPlan);

fht unit

Subroutines

fhtr1d
fhtr1dinv

fhtr1d subroutine

(************************************************************************* 1-dimensional Fast Hartley Transform. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - real function to be transformed N - problem size OUTPUT PARAMETERS A - FHT of a input array, array[0..N-1], A_out[k] = sum(A_in[j]*(cos(2*pi*j*k/N)+sin(2*pi*j*k/N)), j=0..N-1) -- ALGLIB -- Copyright 04.06.2009 by Bochkanov Sergey *************************************************************************)
procedure FHTR1D(var A : TReal1DArray; N : AlglibInteger);

fhtr1dinv subroutine

(************************************************************************* 1-dimensional inverse FHT. Algorithm has O(N*logN) complexity for any N (composite or prime). INPUT PARAMETERS A - array[0..N-1] - complex array to be transformed N - problem size OUTPUT PARAMETERS A - inverse FHT of a input array, array[0..N-1] -- ALGLIB -- Copyright 29.05.2009 by Bochkanov Sergey *************************************************************************)
procedure FHTR1DInv(var A : TReal1DArray; N : AlglibInteger);

fresnel unit

Subroutines

fresnelintegral

fresnelintegral subroutine

(************************************************************************* Fresnel integral Evaluates the Fresnel integrals x - | | C(x) = | cos(pi/2 t**2) dt, | | - 0 x - | | S(x) = | sin(pi/2 t**2) dt. | | - 0 The integrals are evaluated by a power series for x < 1. For x >= 1 auxiliary functions f(x) and g(x) are employed such that C(x) = 0.5 + f(x) sin( pi/2 x**2 ) - g(x) cos( pi/2 x**2 ) S(x) = 0.5 - f(x) cos( pi/2 x**2 ) - g(x) sin( pi/2 x**2 ) ACCURACY: Relative error. Arithmetic function domain # trials peak rms IEEE S(x) 0, 10 10000 2.0e-15 3.2e-16 IEEE C(x) 0, 10 10000 1.8e-15 3.3e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 2000 by Stephen L. Moshier *************************************************************************)
procedure FresnelIntegral(X : Double; var C : Double; var S : Double);

gammafunc unit

Subroutines

gamma
lngamma

gamma subroutine

(************************************************************************* Gamma function Input parameters: X - argument Domain: 0 < X < 171.6 -170 < X < 0, X is not an integer. Relative error: arithmetic domain # trials peak rms IEEE -170,-33 20000 2.3e-15 3.3e-16 IEEE -33, 33 20000 9.4e-16 2.2e-16 IEEE 33, 171.6 20000 2.3e-15 3.2e-16 Cephes Math Library Release 2.8: June, 2000 Original copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007). *************************************************************************)
function Gamma(x : Double):Double;

lngamma subroutine

(************************************************************************* Natural logarithm of gamma function Input parameters: X - argument Result: logarithm of the absolute value of the Gamma(X). Output parameters: SgnGam - sign(Gamma(X)) Domain: 0 < X < 2.55e305 -2.55e305 < X < 0, X is not an integer. ACCURACY: arithmetic domain # trials peak rms IEEE 0, 3 28000 5.4e-16 1.1e-16 IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17 The error criterion was relative when the function magnitude was greater than one but absolute when it was less than one. The following test used the relative error criterion, though at certain points the relative error could be much higher than indicated. IEEE -200, -4 10000 4.8e-16 1.3e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier Translated to AlgoPascal by Bochkanov Sergey (2005, 2006, 2007). *************************************************************************)
function LnGamma(x : Double; var SgnGam : Double):Double;

gkq unit

Subroutines

gkqgenerategaussjacobi
gkqgenerategausslegendre
gkqgeneraterec
gkqlegendrecalc
gkqlegendretbl

gkqgenerategaussjacobi subroutine

(************************************************************************* Returns Gauss and Gauss-Kronrod nodes/weights for Gauss-Jacobi quadrature on [-1,1] with weight function W(x)=Power(1-x,Alpha)*Power(1+x,Beta). INPUT PARAMETERS: N - number of Kronrod nodes, must be odd number, >=3. Alpha - power-law coefficient, Alpha>-1 Beta - power-law coefficient, Beta>-1 OUTPUT PARAMETERS: Info - error code: * -5 no real and positive Gauss-Kronrod formula can be created for such a weight function with a given number of nodes. * -4 an error was detected when calculating weights/nodes. Alpha or Beta are too close to -1 to obtain weights/nodes with high enough accuracy, or, may be, N is too large. Try to use multiple precision version. * -3 internal eigenproblem solver hasn't converged * -1 incorrect N was passed * +1 OK * +2 OK, but quadrature rule have exterior nodes, x[0]<-1 or x[n-1]>+1 X - array[0..N-1] - array of quadrature nodes, ordered in ascending order. WKronrod - array[0..N-1] - Kronrod weights WGauss - array[0..N-1] - Gauss weights (interleaved with zeros corresponding to extended Kronrod nodes). -- ALGLIB -- Copyright 12.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GKQGenerateGaussJacobi(N : AlglibInteger; Alpha : Double; Beta : Double; var Info : AlglibInteger; var X : TReal1DArray; var WKronrod : TReal1DArray; var WGauss : TReal1DArray);

gkqgenerategausslegendre subroutine

(************************************************************************* Returns Gauss and Gauss-Kronrod nodes/weights for Gauss-Legendre quadrature with N points. GKQLegendreCalc (calculation) or GKQLegendreTbl (precomputed table) is used depending on machine precision and number of nodes. INPUT PARAMETERS: N - number of Kronrod nodes, must be odd number, >=3. OUTPUT PARAMETERS: Info - error code: * -4 an error was detected when calculating weights/nodes. N is too large to obtain weights/nodes with high enough accuracy. Try to use multiple precision version. * -3 internal eigenproblem solver hasn't converged * -1 incorrect N was passed * +1 OK X - array[0..N-1] - array of quadrature nodes, ordered in ascending order. WKronrod - array[0..N-1] - Kronrod weights WGauss - array[0..N-1] - Gauss weights (interleaved with zeros corresponding to extended Kronrod nodes). -- ALGLIB -- Copyright 12.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GKQGenerateGaussLegendre(N : AlglibInteger; var Info : AlglibInteger; var X : TReal1DArray; var WKronrod : TReal1DArray; var WGauss : TReal1DArray);

gkqgeneraterec subroutine

(************************************************************************* Computation of nodes and weights of a Gauss-Kronrod quadrature formula The algorithm generates the N-point Gauss-Kronrod quadrature formula with weight function given by coefficients alpha and beta of a recurrence relation which generates a system of orthogonal polynomials: P-1(x) = 0 P0(x) = 1 Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x) and zero moment Mu0 Mu0 = integral(W(x)dx,a,b) INPUT PARAMETERS: Alpha – alpha coefficients, array[0..floor(3*K/2)]. Beta – beta coefficients, array[0..ceil(3*K/2)]. Beta[0] is not used and may be arbitrary. Beta[I]>0. Mu0 – zeroth moment of the weight function. N – number of nodes of the Gauss-Kronrod quadrature formula, N >= 3, N = 2*K+1. OUTPUT PARAMETERS: Info - error code: * -5 no real and positive Gauss-Kronrod formula can be created for such a weight function with a given number of nodes. * -4 N is too large, task may be ill conditioned - x[i]=x[i+1] found. * -3 internal eigenproblem solver hasn't converged * -2 Beta[i]<=0 * -1 incorrect N was passed * +1 OK X - array[0..N-1] - array of quadrature nodes, in ascending order. WKronrod - array[0..N-1] - Kronrod weights WGauss - array[0..N-1] - Gauss weights (interleaved with zeros corresponding to extended Kronrod nodes). -- ALGLIB -- Copyright 08.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GKQGenerateRec(Alpha : TReal1DArray; Beta : TReal1DArray; Mu0 : Double; N : AlglibInteger; var Info : AlglibInteger; var X : TReal1DArray; var WKronrod : TReal1DArray; var WGauss : TReal1DArray);

gkqlegendrecalc subroutine

(************************************************************************* Returns Gauss and Gauss-Kronrod nodes for quadrature with N points. Reduction to tridiagonal eigenproblem is used. INPUT PARAMETERS: N - number of Kronrod nodes, must be odd number, >=3. OUTPUT PARAMETERS: Info - error code: * -4 an error was detected when calculating weights/nodes. N is too large to obtain weights/nodes with high enough accuracy. Try to use multiple precision version. * -3 internal eigenproblem solver hasn't converged * -1 incorrect N was passed * +1 OK X - array[0..N-1] - array of quadrature nodes, ordered in ascending order. WKronrod - array[0..N-1] - Kronrod weights WGauss - array[0..N-1] - Gauss weights (interleaved with zeros corresponding to extended Kronrod nodes). -- ALGLIB -- Copyright 12.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GKQLegendreCalc(N : AlglibInteger; var Info : AlglibInteger; var X : TReal1DArray; var WKronrod : TReal1DArray; var WGauss : TReal1DArray);

gkqlegendretbl subroutine

(************************************************************************* Returns Gauss and Gauss-Kronrod nodes for quadrature with N points using pre-calculated table. Nodes/weights were computed with accuracy up to 1.0E-32 (if MPFR version of ALGLIB is used). In standard double precision accuracy reduces to something about 2.0E-16 (depending on your compiler's handling of long floating point constants). INPUT PARAMETERS: N - number of Kronrod nodes. N can be 15, 21, 31, 41, 51, 61. OUTPUT PARAMETERS: X - array[0..N-1] - array of quadrature nodes, ordered in ascending order. WKronrod - array[0..N-1] - Kronrod weights WGauss - array[0..N-1] - Gauss weights (interleaved with zeros corresponding to extended Kronrod nodes). -- ALGLIB -- Copyright 12.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GKQLegendreTbl(N : AlglibInteger; var X : TReal1DArray; var WKronrod : TReal1DArray; var WGauss : TReal1DArray; var Eps : Double);

gq unit

Subroutines

gqgenerategausshermite
gqgenerategaussjacobi
gqgenerategausslaguerre
gqgenerategausslegendre
gqgenerategausslobattorec
gqgenerategaussradaurec
gqgeneraterec

gqgenerategausshermite subroutine

(************************************************************************* Returns nodes/weights for Gauss-Hermite quadrature on (-inf,+inf) with weight function W(x)=Exp(-x*x) INPUT PARAMETERS: N - number of nodes, >=1 OUTPUT PARAMETERS: Info - error code: * -4 an error was detected when calculating weights/nodes. May be, N is too large. Try to use multiple precision version. * -3 internal eigenproblem solver hasn't converged * -1 incorrect N/Alpha was passed * +1 OK X - array[0..N-1] - array of quadrature nodes, in ascending order. W - array[0..N-1] - array of quadrature weights. -- ALGLIB -- Copyright 12.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GQGenerateGaussHermite(N : AlglibInteger; var Info : AlglibInteger; var X : TReal1DArray; var W : TReal1DArray);

gqgenerategaussjacobi subroutine

(************************************************************************* Returns nodes/weights for Gauss-Jacobi quadrature on [-1,1] with weight function W(x)=Power(1-x,Alpha)*Power(1+x,Beta). INPUT PARAMETERS: N - number of nodes, >=1 Alpha - power-law coefficient, Alpha>-1 Beta - power-law coefficient, Beta>-1 OUTPUT PARAMETERS: Info - error code: * -4 an error was detected when calculating weights/nodes. Alpha or Beta are too close to -1 to obtain weights/nodes with high enough accuracy, or, may be, N is too large. Try to use multiple precision version. * -3 internal eigenproblem solver hasn't converged * -1 incorrect N/Alpha/Beta was passed * +1 OK X - array[0..N-1] - array of quadrature nodes, in ascending order. W - array[0..N-1] - array of quadrature weights. -- ALGLIB -- Copyright 12.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GQGenerateGaussJacobi(N : AlglibInteger; Alpha : Double; Beta : Double; var Info : AlglibInteger; var X : TReal1DArray; var W : TReal1DArray);

gqgenerategausslaguerre subroutine

(************************************************************************* Returns nodes/weights for Gauss-Laguerre quadrature on [0,+inf) with weight function W(x)=Power(x,Alpha)*Exp(-x) INPUT PARAMETERS: N - number of nodes, >=1 Alpha - power-law coefficient, Alpha>-1 OUTPUT PARAMETERS: Info - error code: * -4 an error was detected when calculating weights/nodes. Alpha is too close to -1 to obtain weights/nodes with high enough accuracy or, may be, N is too large. Try to use multiple precision version. * -3 internal eigenproblem solver hasn't converged * -1 incorrect N/Alpha was passed * +1 OK X - array[0..N-1] - array of quadrature nodes, in ascending order. W - array[0..N-1] - array of quadrature weights. -- ALGLIB -- Copyright 12.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GQGenerateGaussLaguerre(N : AlglibInteger; Alpha : Double; var Info : AlglibInteger; var X : TReal1DArray; var W : TReal1DArray);

gqgenerategausslegendre subroutine

(************************************************************************* Returns nodes/weights for Gauss-Legendre quadrature on [-1,1] with N nodes. INPUT PARAMETERS: N - number of nodes, >=1 OUTPUT PARAMETERS: Info - error code: * -4 an error was detected when calculating weights/nodes. N is too large to obtain weights/nodes with high enough accuracy. Try to use multiple precision version. * -3 internal eigenproblem solver hasn't converged * -1 incorrect N was passed * +1 OK X - array[0..N-1] - array of quadrature nodes, in ascending order. W - array[0..N-1] - array of quadrature weights. -- ALGLIB -- Copyright 12.05.2009 by Bochkanov Sergey *************************************************************************)
procedure GQGenerateGaussLegendre(N : AlglibInteger; var Info : AlglibInteger; var X : TReal1DArray; var W : TReal1DArray);

gqgenerategausslobattorec subroutine

(************************************************************************* Computation of nodes and weights for a Gauss-Lobatto quadrature formula The algorithm generates the N-point Gauss-Lobatto quadrature formula with weight function given by coefficients alpha and beta of a recurrence which generates a system of orthogonal polynomials. P-1(x) = 0 P0(x) = 1 Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x) and zeroth moment Mu0 Mu0 = integral(W(x)dx,a,b) INPUT PARAMETERS: Alpha – array[0..N-2], alpha coefficients Beta – array[0..N-2], beta coefficients. Zero-indexed element is not used, may be arbitrary. Beta[I]>0 Mu0 – zeroth moment of the weighting function. A – left boundary of the integration interval. B – right boundary of the integration interval. N – number of nodes of the quadrature formula, N>=3 (including the left and right boundary nodes). OUTPUT PARAMETERS: Info - error code: * -3 internal eigenproblem solver hasn't converged * -2 Beta[i]<=0 * -1 incorrect N was passed * 1 OK X - array[0..N-1] - array of quadrature nodes, in ascending order. W - array[0..N-1] - array of quadrature weights. -- ALGLIB -- Copyright 2005-2009 by Bochkanov Sergey *************************************************************************)
procedure GQGenerateGaussLobattoRec(Alpha : TReal1DArray; Beta : TReal1DArray; Mu0 : Double; A : Double; B : Double; N : AlglibInteger; var Info : AlglibInteger; var X : TReal1DArray; var W : TReal1DArray);

gqgenerategaussradaurec subroutine

(************************************************************************* Computation of nodes and weights for a Gauss-Radau quadrature formula The algorithm generates the N-point Gauss-Radau quadrature formula with weight function given by the coefficients alpha and beta of a recurrence which generates a system of orthogonal polynomials. P-1(x) = 0 P0(x) = 1 Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x) and zeroth moment Mu0 Mu0 = integral(W(x)dx,a,b) INPUT PARAMETERS: Alpha – array[0..N-2], alpha coefficients. Beta – array[0..N-1], beta coefficients Zero-indexed element is not used. Beta[I]>0 Mu0 – zeroth moment of the weighting function. A – left boundary of the integration interval. N – number of nodes of the quadrature formula, N>=2 (including the left boundary node). OUTPUT PARAMETERS: Info - error code: * -3 internal eigenproblem solver hasn't converged * -2 Beta[i]<=0 * -1 incorrect N was passed * 1 OK X - array[0..N-1] - array of quadrature nodes, in ascending order. W - array[0..N-1] - array of quadrature weights. -- ALGLIB -- Copyright 2005-2009 by Bochkanov Sergey *************************************************************************)
procedure GQGenerateGaussRadauRec(Alpha : TReal1DArray; Beta : TReal1DArray; Mu0 : Double; A : Double; N : AlglibInteger; var Info : AlglibInteger; var X : TReal1DArray; var W : TReal1DArray);

gqgeneraterec subroutine

(************************************************************************* Computation of nodes and weights for a Gauss quadrature formula The algorithm generates the N-point Gauss quadrature formula with weight function given by coefficients alpha and beta of a recurrence relation which generates a system of orthogonal polynomials: P-1(x) = 0 P0(x) = 1 Pn+1(x) = (x-alpha(n))*Pn(x) - beta(n)*Pn-1(x) and zeroth moment Mu0 Mu0 = integral(W(x)dx,a,b) INPUT PARAMETERS: Alpha – array[0..N-1], alpha coefficients Beta – array[0..N-1], beta coefficients Zero-indexed element is not used and may be arbitrary. Beta[I]>0. Mu0 – zeroth moment of the weight function. N – number of nodes of the quadrature formula, N>=1 OUTPUT PARAMETERS: Info - error code: * -3 internal eigenproblem solver hasn't converged * -2 Beta[i]<=0 * -1 incorrect N was passed * 1 OK X - array[0..N-1] - array of quadrature nodes, in ascending order. W - array[0..N-1] - array of quadrature weights. -- ALGLIB -- Copyright 2005-2009 by Bochkanov Sergey *************************************************************************)
procedure GQGenerateRec(const Alpha : TReal1DArray; const Beta : TReal1DArray; Mu0 : Double; N : AlglibInteger; var Info : AlglibInteger; var X : TReal1DArray; var W : TReal1DArray);

hermite unit

Subroutines

hermitecalculate
hermitecoefficients
hermitesum

hermitecalculate subroutine

(************************************************************************* Calculation of the value of the Hermite polynomial. Parameters: n - degree, n>=0 x - argument Result: the value of the Hermite polynomial Hn at x *************************************************************************)
function HermiteCalculate(const N : AlglibInteger; const X : Double):Double;

hermitecoefficients subroutine

(************************************************************************* Representation of Hn as C[0] + C[1]*X + ... + C[N]*X^N Input parameters: N - polynomial degree, n>=0 Output parameters: C - coefficients *************************************************************************)
procedure HermiteCoefficients(const N : AlglibInteger; var C : TReal1DArray);

hermitesum subroutine

(************************************************************************* Summation of Hermite polynomials using Clenshaw’s recurrence formula. This routine calculates c[0]*H0(x) + c[1]*H1(x) + ... + c[N]*HN(x) Parameters: n - degree, n>=0 x - argument Result: the value of the Hermite polynomial at x *************************************************************************)
function HermiteSum(const C : TReal1DArray; const n : AlglibInteger; const x : Double):Double;

hqrnd unit

Structures

hqrndstate

Subroutines

hqrndexponential
hqrndnormal
hqrndnormal2
hqrndrandomize
hqrndseed
hqrnduniformi
hqrnduniformr
hqrndunit2

hqrndstate structure

(************************************************************************* Portable high quality random number generator state. Initialized with HQRNDRandomize() or HQRNDSeed(). Fields: S1, S2 - seed values V - precomputed value MagicV - 'magic' value used to determine whether State structure was correctly initialized. *************************************************************************)
HQRNDState = record S1 : AlglibInteger; S2 : AlglibInteger; V : Double; MagicV : AlglibInteger; end;

hqrndexponential subroutine

(************************************************************************* Random number generator: exponential distribution State structure must be initialized with HQRNDRandomize() or HQRNDSeed(). -- ALGLIB -- Copyright 11.08.2007 by Bochkanov Sergey *************************************************************************)
function HQRNDExponential(Lambda : Double; var State : HQRNDState):Double;

hqrndnormal subroutine

(************************************************************************* Random number generator: normal numbers This function generates one random number from normal distribution. Its performance is equal to that of HQRNDNormal2() State structure must be initialized with HQRNDRandomize() or HQRNDSeed(). -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
function HQRNDNormal(var State : HQRNDState):Double;

hqrndnormal2 subroutine

(************************************************************************* Random number generator: normal numbers This function generates two independent random numbers from normal distribution. Its performance is equal to that of HQRNDNormal() State structure must be initialized with HQRNDRandomize() or HQRNDSeed(). -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
procedure HQRNDNormal2(var State : HQRNDState; var X1 : Double; var X2 : Double);

hqrndrandomize subroutine

(************************************************************************* HQRNDState initialization with random values which come from standard RNG. -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
procedure HQRNDRandomize(var State : HQRNDState);

hqrndseed subroutine

(************************************************************************* HQRNDState initialization with seed values -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
procedure HQRNDSeed(S1 : AlglibInteger; S2 : AlglibInteger; var State : HQRNDState);

hqrnduniformi subroutine

(************************************************************************* This function generates random integer number in [0, N) 1. N must be less than HQRNDMax-1. 2. State structure must be initialized with HQRNDRandomize() or HQRNDSeed() -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
function HQRNDUniformI(N : AlglibInteger; var State : HQRNDState):AlglibInteger;

hqrnduniformr subroutine

(************************************************************************* This function generates random real number in (0,1), not including interval boundaries State structure must be initialized with HQRNDRandomize() or HQRNDSeed(). -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
function HQRNDUniformR(var State : HQRNDState):Double;

hqrndunit2 subroutine

(************************************************************************* Random number generator: random X and Y such that X^2+Y^2=1 State structure must be initialized with HQRNDRandomize() or HQRNDSeed(). -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
procedure HQRNDUnit2(var State : HQRNDState; var X : Double; var Y : Double);

ibetaf unit

Subroutines

incompletebeta
invincompletebeta

incompletebeta subroutine

(************************************************************************* Incomplete beta integral Returns incomplete beta integral of the arguments, evaluated from zero to x. The function is defined as x - - | (a+b) | | a-1 b-1 ----------- | t (1-t) dt. - - | | | (a) | (b) - 0 The domain of definition is 0 <= x <= 1. In this implementation a and b are restricted to positive values. The integral from x to 1 may be obtained by the symmetry relation 1 - incbet( a, b, x ) = incbet( b, a, 1-x ). The integral is evaluated by a continued fraction expansion or, when b*x is small, by a power series. ACCURACY: Tested at uniformly distributed random points (a,b,x) with a and b in "domain" and x between 0 and 1. Relative error arithmetic domain # trials peak rms IEEE 0,5 10000 6.9e-15 4.5e-16 IEEE 0,85 250000 2.2e-13 1.7e-14 IEEE 0,1000 30000 5.3e-12 6.3e-13 IEEE 0,10000 250000 9.3e-11 7.1e-12 IEEE 0,100000 10000 8.7e-10 4.8e-11 Outputs smaller than the IEEE gradual underflow threshold were excluded from these statistics. Cephes Math Library, Release 2.8: June, 2000 Copyright 1984, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function IncompleteBeta(a : Double; b : Double; x : Double):Double;

invincompletebeta subroutine

(************************************************************************* Inverse of imcomplete beta integral Given y, the function finds x such that incbet( a, b, x ) = y . The routine performs interval halving or Newton iterations to find the root of incbet(a,b,x) - y = 0. ACCURACY: Relative error: x a,b arithmetic domain domain # trials peak rms IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13 IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15 IEEE 0,1 0,5 50000 1.1e-12 5.5e-15 With a and b constrained to half-integer or integer values: IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13 IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16 With a = .5, b constrained to half-integer or integer values: IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1996, 2000 by Stephen L. Moshier *************************************************************************)
function InvIncompleteBeta(a : Double; b : Double; y : Double):Double;

idwint unit

Structures

idwinterpolant

Subroutines

idwbuildmodifiedshepard
idwbuildmodifiedshepardr
idwbuildnoisy
idwcalc

idwinterpolant structure

(************************************************************************* IDW interpolant. *************************************************************************)
IDWInterpolant = record N : AlglibInteger; NX : AlglibInteger; D : AlglibInteger; R : Double; NW : AlglibInteger; Tree : KDTree; ModelType : AlglibInteger; Q : TReal2DArray; XBuf : TReal1DArray; TBuf : TInteger1DArray; RBuf : TReal1DArray; XYBuf : TReal2DArray; DebugSolverFailures : AlglibInteger; DebugWorstRCond : Double; DebugBestRCond : Double; end;

idwbuildmodifiedshepard subroutine

(************************************************************************* IDW interpolant using modified Shepard method for uniform point distributions. INPUT PARAMETERS: XY - X and Y values, array[0..N-1,0..NX]. First NX columns contain X-values, last column contain Y-values. N - number of nodes, N>0. NX - space dimension, NX>=1. D - nodal function type, either: * 0 constant model. Just for demonstration only, worst model ever. * 1 linear model, least squares fitting. Simpe model for datasets too small for quadratic models * 2 quadratic model, least squares fitting. Best model available (if your dataset is large enough). * -1 "fast" linear model, use with caution!!! It is significantly faster than linear/quadratic and better than constant model. But it is less robust (especially in the presence of noise). NQ - number of points used to calculate nodal functions (ignored for constant models). NQ should be LARGER than: * max(1.5*(1+NX),2^NX+1) for linear model, * max(3/4*(NX+2)*(NX+1),2^NX+1) for quadratic model. Values less than this threshold will be silently increased. NW - number of points used to calculate weights and to interpolate. Required: >=2^NX+1, values less than this threshold will be silently increased. Recommended value: about 2*NQ OUTPUT PARAMETERS: Z - IDW interpolant. NOTES: * best results are obtained with quadratic models, worst - with constant models * when N is large, NQ and NW must be significantly smaller than N both to obtain optimal performance and to obtain optimal accuracy. In 2 or 3-dimensional tasks NQ=15 and NW=25 are good values to start with. * NQ and NW may be greater than N. In such cases they will be automatically decreased. * this subroutine is always succeeds (as long as correct parameters are passed). * see 'Multivariate Interpolation of Large Sets of Scattered Data' by Robert J. Renka for more information on this algorithm. * this subroutine assumes that point distribution is uniform at the small scales. If it isn't - for example, points are concentrated along "lines", but "lines" distribution is uniform at the larger scale - then you should use IDWBuildModifiedShepardR() -- ALGLIB PROJECT -- Copyright 02.03.2010 by Bochkanov Sergey *************************************************************************)
procedure IDWBuildModifiedShepard(const XY : TReal2DArray; N : AlglibInteger; NX : AlglibInteger; D : AlglibInteger; NQ : AlglibInteger; NW : AlglibInteger; var Z : IDWInterpolant);

idwbuildmodifiedshepardr subroutine

(************************************************************************* IDW interpolant using modified Shepard method for non-uniform datasets. This type of model uses constant nodal functions and interpolates using all nodes which are closer than user-specified radius R. It may be used when points distribution is non-uniform at the small scale, but it is at the distances as large as R. INPUT PARAMETERS: XY - X and Y values, array[0..N-1,0..NX]. First NX columns contain X-values, last column contain Y-values. N - number of nodes, N>0. NX - space dimension, NX>=1. R - radius, R>0 OUTPUT PARAMETERS: Z - IDW interpolant. NOTES: * if there is less than IDWKMin points within R-ball, algorithm selects IDWKMin closest ones, so that continuity properties of interpolant are preserved even far from points. -- ALGLIB PROJECT -- Copyright 11.04.2010 by Bochkanov Sergey *************************************************************************)
procedure IDWBuildModifiedShepardR(const XY : TReal2DArray; N : AlglibInteger; NX : AlglibInteger; R : Double; var Z : IDWInterpolant);

idwbuildnoisy subroutine

(************************************************************************* IDW model for noisy data. This subroutine may be used to handle noisy data, i.e. data with noise in OUTPUT values. It differs from IDWBuildModifiedShepard() in the following aspects: * nodal functions are not constrained to pass through nodes: Qi(xi)<>yi, i.e. we have fitting instead of interpolation. * weights which are used during least squares fitting stage are all equal to 1.0 (independently of distance) * "fast"-linear or constant nodal functions are not supported (either not robust enough or too rigid) This problem require far more complex tuning than interpolation problems. Below you can find some recommendations regarding this problem: * focus on tuning NQ; it controls noise reduction. As for NW, you can just make it equal to 2*NQ. * you can use cross-validation to determine optimal NQ. * optimal NQ is a result of complex tradeoff between noise level (more noise = larger NQ required) and underlying function complexity (given fixed N, larger NQ means smoothing of compex features in the data). For example, NQ=N will reduce noise to the minimum level possible, but you will end up with just constant/linear/quadratic (depending on D) least squares model for the whole dataset. INPUT PARAMETERS: XY - X and Y values, array[0..N-1,0..NX]. First NX columns contain X-values, last column contain Y-values. N - number of nodes, N>0. NX - space dimension, NX>=1. D - nodal function degree, either: * 1 linear model, least squares fitting. Simpe model for datasets too small for quadratic models (or for very noisy problems). * 2 quadratic model, least squares fitting. Best model available (if your dataset is large enough). NQ - number of points used to calculate nodal functions. NQ should be significantly larger than 1.5 times the number of coefficients in a nodal function to overcome effects of noise: * larger than 1.5*(1+NX) for linear model, * larger than 3/4*(NX+2)*(NX+1) for quadratic model. Values less than this threshold will be silently increased. NW - number of points used to calculate weights and to interpolate. Required: >=2^NX+1, values less than this threshold will be silently increased. Recommended value: about 2*NQ or larger OUTPUT PARAMETERS: Z - IDW interpolant. NOTES: * best results are obtained with quadratic models, linear models are not recommended to use unless you are pretty sure that it is what you want * this subroutine is always succeeds (as long as correct parameters are passed). * see 'Multivariate Interpolation of Large Sets of Scattered Data' by Robert J. Renka for more information on this algorithm. -- ALGLIB PROJECT -- Copyright 02.03.2010 by Bochkanov Sergey *************************************************************************)
procedure IDWBuildNoisy(const XY : TReal2DArray; N : AlglibInteger; NX : AlglibInteger; D : AlglibInteger; NQ : AlglibInteger; NW : AlglibInteger; var Z : IDWInterpolant);

idwcalc subroutine

(************************************************************************* IDW interpolation INPUT PARAMETERS: Z - IDW interpolant built with one of model building subroutines. X - array[0..NX-1], interpolation point Result: IDW interpolant Z(X) -- ALGLIB -- Copyright 02.03.2010 by Bochkanov Sergey *************************************************************************)
function IDWCalc(var Z : IDWInterpolant; const X : TReal1DArray):Double;

igammaf unit

Subroutines

incompletegamma
incompletegammac
invincompletegammac

incompletegamma subroutine

(************************************************************************* Incomplete gamma integral The function is defined by x - 1 | | -t a-1 igam(a,x) = ----- | e t dt. - | | | (a) - 0 In this implementation both arguments must be positive. The integral is evaluated by either a power series or continued fraction expansion, depending on the relative values of a and x. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,30 200000 3.6e-14 2.9e-15 IEEE 0,100 300000 9.9e-14 1.5e-14 Cephes Math Library Release 2.8: June, 2000 Copyright 1985, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function IncompleteGamma(a : Double; x : Double):Double;

incompletegammac subroutine

(************************************************************************* Complemented incomplete gamma integral The function is defined by igamc(a,x) = 1 - igam(a,x) inf. - 1 | | -t a-1 = ----- | e t dt. - | | | (a) - x In this implementation both arguments must be positive. The integral is evaluated by either a power series or continued fraction expansion, depending on the relative values of a and x. ACCURACY: Tested at random a, x. a x Relative error: arithmetic domain domain # trials peak rms IEEE 0.5,100 0,100 200000 1.9e-14 1.7e-15 IEEE 0.01,0.5 0,100 200000 1.4e-13 1.6e-15 Cephes Math Library Release 2.8: June, 2000 Copyright 1985, 1987, 2000 by Stephen L. Moshier *************************************************************************)
function IncompleteGammaC(a : Double; x : Double):Double;

invincompletegammac subroutine

(************************************************************************* Inverse of complemented imcomplete gamma integral Given p, the function finds x such that igamc( a, x ) = p. Starting with the approximate value 3 x = a t where t = 1 - d - ndtri(p) sqrt(d) and d = 1/9a, the routine performs up to 10 Newton iterations to find the root of igamc(a,x) - p = 0. ACCURACY: Tested at random a, p in the intervals indicated. a p Relative error: arithmetic domain domain # trials peak rms IEEE 0.5,100 0,0.5 100000 1.0e-14 1.7e-15 IEEE 0.01,0.5 0,0.5 100000 9.0e-14 3.4e-15 IEEE 0.5,10000 0,0.5 20000 2.3e-13 3.8e-14 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function InvIncompleteGammaC(a : Double; y0 : Double):Double;

inverseupdate unit

Subroutines

rmatrixinvupdatecolumn
rmatrixinvupdaterow
rmatrixinvupdatesimple
rmatrixinvupdateuv

rmatrixinvupdatecolumn subroutine

(************************************************************************* Inverse matrix update by the Sherman-Morrison formula The algorithm updates matrix A^-1 when adding a vector to a column of matrix A. Input parameters: InvA - inverse of matrix A. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. UpdColumn - the column of A whose vector U was added. 0 <= UpdColumn <= N-1 U - the vector to be added to a column. Array whose index ranges within [0..N-1]. Output parameters: InvA - inverse of modified matrix A. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
procedure RMatrixInvUpdateColumn(var InvA : TReal2DArray; N : AlglibInteger; UpdColumn : AlglibInteger; const U : TReal1DArray);

rmatrixinvupdaterow subroutine

(************************************************************************* Inverse matrix update by the Sherman-Morrison formula The algorithm updates matrix A^-1 when adding a vector to a row of matrix A. Input parameters: InvA - inverse of matrix A. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. UpdRow - the row of A whose vector V was added. 0 <= Row <= N-1 V - the vector to be added to a row. Array whose index ranges within [0..N-1]. Output parameters: InvA - inverse of modified matrix A. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
procedure RMatrixInvUpdateRow(var InvA : TReal2DArray; N : AlglibInteger; UpdRow : AlglibInteger; const V : TReal1DArray);

rmatrixinvupdatesimple subroutine

(************************************************************************* Inverse matrix update by the Sherman-Morrison formula The algorithm updates matrix A^-1 when adding a number to an element of matrix A. Input parameters: InvA - inverse of matrix A. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. UpdRow - row where the element to be updated is stored. UpdColumn - column where the element to be updated is stored. UpdVal - a number to be added to the element. Output parameters: InvA - inverse of modified matrix A. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
procedure RMatrixInvUpdateSimple(var InvA : TReal2DArray; N : AlglibInteger; UpdRow : AlglibInteger; UpdColumn : AlglibInteger; UpdVal : Double);

rmatrixinvupdateuv subroutine

(************************************************************************* Inverse matrix update by the Sherman-Morrison formula The algorithm computes the inverse of matrix A+u*v’ by using the given matrix A^-1 and the vectors u and v. Input parameters: InvA - inverse of matrix A. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. U - the vector modifying the matrix. Array whose index ranges within [0..N-1]. V - the vector modifying the matrix. Array whose index ranges within [0..N-1]. Output parameters: InvA - inverse of matrix A + u*v'. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
procedure RMatrixInvUpdateUV(var InvA : TReal2DArray; N : AlglibInteger; const U : TReal1DArray; const V : TReal1DArray);

jacobianelliptic unit

Subroutines

jacobianellipticfunctions

jacobianellipticfunctions subroutine

(************************************************************************* Jacobian Elliptic Functions Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m), and dn(u|m) of parameter m between 0 and 1, and real argument u. These functions are periodic, with quarter-period on the real axis equal to the complete elliptic integral ellpk(1.0-m). Relation to incomplete elliptic integral: If u = ellik(phi,m), then sn(u|m) = sin(phi), and cn(u|m) = cos(phi). Phi is called the amplitude of u. Computation is by means of the arithmetic-geometric mean algorithm, except when m is within 1e-9 of 0 or 1. In the latter case with m close to 1, the approximation applies only for phi < pi/2. ACCURACY: Tested at random points with u between 0 and 10, m between 0 and 1. Absolute error (* = relative error): arithmetic function # trials peak rms IEEE phi 10000 9.2e-16* 1.4e-16* IEEE sn 50000 4.1e-15 4.6e-16 IEEE cn 40000 3.6e-15 4.4e-16 IEEE dn 10000 1.3e-12 1.8e-14 Peak error observed in consistency check using addition theorem for sn(u+v) was 4e-16 (absolute). Also tested by the above relation to the incomplete elliptic integral. Accuracy deteriorates when u is large. Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
procedure JacobianEllipticFunctions(u : Double; m : Double; var sn : Double; var cn : Double; var dn : Double; var ph : Double);

jarquebera unit

Subroutines

jarqueberatest

jarqueberatest subroutine

(************************************************************************* Jarque-Bera test This test checks hypotheses about the fact that a given sample X is a sample of normal random variable. Requirements: * the number of elements in the sample is not less than 5. Input parameters: X - sample. Array whose index goes from 0 to N-1. N - size of the sample. N>=5 Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. Accuracy of the approximation used (5<=N<=1951): p-value relative error (5<=N<=1951) [1, 0.1] < 1% [0.1, 0.01] < 2% [0.01, 0.001] < 6% [0.001, 0] wasn't measured For N>1951 accuracy wasn't measured but it shouldn't be sharply different from table values. -- ALGLIB -- Copyright 09.04.2007 by Bochkanov Sergey *************************************************************************)
procedure JarqueBeraTest(const X : TReal1DArray; N : AlglibInteger; var P : Double);

kmeans unit

Subroutines

kmeansgenerate

kmeansgenerate subroutine

(************************************************************************* k-means++ clusterization INPUT PARAMETERS: XY - dataset, array [0..NPoints-1,0..NVars-1]. NPoints - dataset size, NPoints>=K NVars - number of variables, NVars>=1 K - desired number of clusters, K>=1 Restarts - number of restarts, Restarts>=1 OUTPUT PARAMETERS: Info - return code: * -3, if task is degenerate (number of distinct points is less than K) * -1, if incorrect NPoints/NFeatures/K/Restarts was passed * 1, if subroutine finished successfully C - array[0..NVars-1,0..K-1].matrix whose columns store cluster's centers XYC - array which contains number of clusters dataset points belong to. -- ALGLIB -- Copyright 21.03.2009 by Bochkanov Sergey *************************************************************************)
procedure KMeansGenerate(const XY : TReal2DArray; NPoints : AlglibInteger; NVars : AlglibInteger; K : AlglibInteger; Restarts : AlglibInteger; var Info : AlglibInteger; var C : TReal2DArray; var XYC : TInteger1DArray);

laguerre unit

Subroutines

laguerrecalculate
laguerrecoefficients
laguerresum

laguerrecalculate subroutine

(************************************************************************* Calculation of the value of the Laguerre polynomial. Parameters: n - degree, n>=0 x - argument Result: the value of the Laguerre polynomial Ln at x *************************************************************************)
function LaguerreCalculate(const n : AlglibInteger; const x : Double):Double;

laguerrecoefficients subroutine

(************************************************************************* Representation of Ln as C[0] + C[1]*X + ... + C[N]*X^N Input parameters: N - polynomial degree, n>=0 Output parameters: C - coefficients *************************************************************************)
procedure LaguerreCoefficients(const N : AlglibInteger; var C : TReal1DArray);

laguerresum subroutine

(************************************************************************* Summation of Laguerre polynomials using Clenshaw’s recurrence formula. This routine calculates c[0]*L0(x) + c[1]*L1(x) + ... + c[N]*LN(x) Parameters: n - degree, n>=0 x - argument Result: the value of the Laguerre polynomial at x *************************************************************************)
function LaguerreSum(const C : TReal1DArray; const n : AlglibInteger; const x : Double):Double;

lda unit

Subroutines

fisherlda
fisherldan

fisherlda subroutine

(************************************************************************* Multiclass Fisher LDA Subroutine finds coefficients of linear combination which optimally separates training set on classes. INPUT PARAMETERS: XY - training set, array[0..NPoints-1,0..NVars]. First NVars columns store values of independent variables, next column stores number of class (from 0 to NClasses-1) which dataset element belongs to. Fractional values are rounded to nearest integer. NPoints - training set size, NPoints>=0 NVars - number of independent variables, NVars>=1 NClasses - number of classes, NClasses>=2 OUTPUT PARAMETERS: Info - return code: * -4, if internal EVD subroutine hasn't converged * -2, if there is a point with class number outside of [0..NClasses-1]. * -1, if incorrect parameters was passed (NPoints<0, NVars<1, NClasses<2) * 1, if task has been solved * 2, if there was a multicollinearity in training set, but task has been solved. W - linear combination coefficients, array[0..NVars-1] -- ALGLIB -- Copyright 31.05.2008 by Bochkanov Sergey *************************************************************************)
procedure FisherLDA(const XY : TReal2DArray; NPoints : AlglibInteger; NVars : AlglibInteger; NClasses : AlglibInteger; var Info : AlglibInteger; var W : TReal1DArray);

fisherldan subroutine

(************************************************************************* N-dimensional multiclass Fisher LDA Subroutine finds coefficients of linear combinations which optimally separates training set on classes. It returns N-dimensional basis whose vector are sorted by quality of training set separation (in descending order). INPUT PARAMETERS: XY - training set, array[0..NPoints-1,0..NVars]. First NVars columns store values of independent variables, next column stores number of class (from 0 to NClasses-1) which dataset element belongs to. Fractional values are rounded to nearest integer. NPoints - training set size, NPoints>=0 NVars - number of independent variables, NVars>=1 NClasses - number of classes, NClasses>=2 OUTPUT PARAMETERS: Info - return code: * -4, if internal EVD subroutine hasn't converged * -2, if there is a point with class number outside of [0..NClasses-1]. * -1, if incorrect parameters was passed (NPoints<0, NVars<1, NClasses<2) * 1, if task has been solved * 2, if there was a multicollinearity in training set, but task has been solved. W - basis, array[0..NVars-1,0..NVars-1] columns of matrix stores basis vectors, sorted by quality of training set separation (in descending order) -- ALGLIB -- Copyright 31.05.2008 by Bochkanov Sergey *************************************************************************)
procedure FisherLDAN(const XY : TReal2DArray; NPoints : AlglibInteger; NVars : AlglibInteger; NClasses : AlglibInteger; var Info : AlglibInteger; var W : TReal2DArray);

ldlt unit

Subroutines

smatrixldlt

smatrixldlt subroutine

(************************************************************************* LDLTDecomposition of a symmetric matrix The algorithm represents a symmetric matrix (which is not necessarily positive definite) as A=L*D*L' or A = U*D*U', where D is a block-diagonal matrix with blocks 1x1 or 2x2, matrix L (matrix U) is a product of lower (upper) triangular matrices with unit diagonal and permutation matrices. Input parameters: A - factorized matrix, array with elements [0..N-1, 0..N-1]. If IsUpper – True, then the upper triangle contains elements of symmetric matrix A, and the lower triangle is not used. The same applies if IsUpper = False. N - size of factorized matrix. IsUpper - parameter which shows a method of matrix definition (lower or upper triangle). Output parameters: A - matrices D and U, if IsUpper = True, or L, if IsUpper = False, in compact form, replacing the upper (lower) triangle of matrix A. In that case, the elements under (over) the main diagonal are not used nor modified. Pivots - tables of performed permutations (see below). If IsUpper = True, then A = U*D*U', U = P(n)*U(n)*...*P(k)*U(k), where P(k) is the permutation matrix, U(k) - upper triangular matrix with its unit main diagonal and k decreases from n with step s which is equal to 1 or 2 (according to the size of the blocks of matrix D). ( I v 0 ) k-s+1 U(k) = ( 0 I 0 ) s ( 0 0 I ) n-k-1 k-s+1 s n-k-1 If Pivots[k]>=0, then s=1, P(k) - permutation of rows k and Pivots[k], the vectorv forming matrix U(k) is stored in elements A(0:k-1,k), D(k) replaces A(k,k). If Pivots[k]=Pivots[k-1]<0 then s=2, P(k) - permutation of rows k-1 and N+Pivots[k-1], the vector v forming matrix U(k) is stored in elements A(0:k-1,k:k+1), the upper triangle of block D(k) is stored in A(k,k), A(k,k+1) and A(k+1,k+1). If IsUpper = False, then A = L*D*L', L=P(0)*L(0)*...*P(k)*L(k), where P(k) is the permutation matrix, L(k) – lower triangular matrix with unit main diagonal and k decreases from 1 with step s which is equal to 1 or 2 (according to the size of the blocks of matrix D). ( I 0 0 ) k-1 L(k) = ( 0 I 0 ) s ( 0 v I ) n-k-s+1 k-1 s n-k-s+1 If Pivots[k]>=0 then s=1, P(k) – permutation of rows k and Pivots[k], the vector v forming matrix L(k) is stored in elements A(k+1:n-1,k), D(k) replaces A(k,k). If Pivots[k]=Pivots[k+1]<0 then s=2, P(k) - permutation of rows k+1 and N+Pivots[k+1], the vector v forming matrix L(k) is stored in elements A(k+2:n-1,k:k+1), the lower triangle of block D(k) is stored in A(k,k), A(k+1,k) and A(k+1,k+1). -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University June 30, 1999 *************************************************************************)
procedure SMatrixLDLT(var A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; var Pivots : TInteger1DArray);

legendre unit

Subroutines

legendrecalculate
legendrecoefficients
legendresum

legendrecalculate subroutine

(************************************************************************* Calculation of the value of the Legendre polynomial Pn. Parameters: n - degree, n>=0 x - argument Result: the value of the Legendre polynomial Pn at x *************************************************************************)
function LegendreCalculate(const n : AlglibInteger; const x : Double):Double;

legendrecoefficients subroutine

(************************************************************************* Representation of Pn as C[0] + C[1]*X + ... + C[N]*X^N Input parameters: N - polynomial degree, n>=0 Output parameters: C - coefficients *************************************************************************)
procedure LegendreCoefficients(const N : AlglibInteger; var C : TReal1DArray);

legendresum subroutine

(************************************************************************* Summation of Legendre polynomials using Clenshaw’s recurrence formula. This routine calculates c[0]*P0(x) + c[1]*P1(x) + ... + c[N]*PN(x) Parameters: n - degree, n>=0 x - argument Result: the value of the Legendre polynomial at x *************************************************************************)
function LegendreSum(const C : TReal1DArray; const n : AlglibInteger; const x : Double):Double;

linreg unit

Structures

lrreport

Subroutines

lravgerror
lravgrelerror
lrbuild
lrbuilds
lrbuildz
lrbuildzs
lrcopy
lrpack
lrprocess
lrrmserror
lrserialize
lrunpack
lrunserialize

lrreport structure

(************************************************************************* LRReport structure contains additional information about linear model: * C - covariation matrix, array[0..NVars,0..NVars]. C[i,j] = Cov(A[i],A[j]) * RMSError - root mean square error on a training set * AvgError - average error on a training set * AvgRelError - average relative error on a training set (excluding observations with zero function value). * CVRMSError - leave-one-out cross-validation estimate of generalization error. Calculated using fast algorithm with O(NVars*NPoints) complexity. * CVAvgError - cross-validation estimate of average error * CVAvgRelError - cross-validation estimate of average relative error All other fields of the structure are intended for internal use and should not be used outside ALGLIB. *************************************************************************)
LRReport = record C : TReal2DArray; RMSError : Double; AvgError : Double; AvgRelError : Double; CVRMSError : Double; CVAvgError : Double; CVAvgRelError : Double; NCVDefects : AlglibInteger; CVDefects : TInteger1DArray; end;

lravgerror subroutine

(************************************************************************* Average error on the test set INPUT PARAMETERS: LM - linear model XY - test set NPoints - test set size RESULT: average error. -- ALGLIB -- Copyright 30.08.2008 by Bochkanov Sergey *************************************************************************)
function LRAvgError(const LM : LinearModel; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

lravgrelerror subroutine

(************************************************************************* RMS error on the test set INPUT PARAMETERS: LM - linear model XY - test set NPoints - test set size RESULT: average relative error. -- ALGLIB -- Copyright 30.08.2008 by Bochkanov Sergey *************************************************************************)
function LRAvgRelError(const LM : LinearModel; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

lrbuild subroutine

(************************************************************************* Linear regression Subroutine builds model: Y = A(0)*X[0] + ... + A(N-1)*X[N-1] + A(N) and model found in ALGLIB format, covariation matrix, training set errors (rms, average, average relative) and leave-one-out cross-validation estimate of the generalization error. CV estimate calculated using fast algorithm with O(NPoints*NVars) complexity. When covariation matrix is calculated standard deviations of function values are assumed to be equal to RMS error on the training set. INPUT PARAMETERS: XY - training set, array [0..NPoints-1,0..NVars]: * NVars columns - independent variables * last column - dependent variable NPoints - training set size, NPoints>NVars+1 NVars - number of independent variables OUTPUT PARAMETERS: Info - return code: * -255, in case of unknown internal error * -4, if internal SVD subroutine haven't converged * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1). * 1, if subroutine successfully finished LM - linear model in the ALGLIB format. Use subroutines of this unit to work with the model. AR - additional results -- ALGLIB -- Copyright 02.08.2008 by Bochkanov Sergey *************************************************************************)
procedure LRBuild(const XY : TReal2DArray; NPoints : AlglibInteger; NVars : AlglibInteger; var Info : AlglibInteger; var LM : LinearModel; var AR : LRReport);

lrbuilds subroutine

(************************************************************************* Linear regression Variant of LRBuild which uses vector of standatd deviations (errors in function values). INPUT PARAMETERS: XY - training set, array [0..NPoints-1,0..NVars]: * NVars columns - independent variables * last column - dependent variable S - standard deviations (errors in function values) array[0..NPoints-1], S[i]>0. NPoints - training set size, NPoints>NVars+1 NVars - number of independent variables OUTPUT PARAMETERS: Info - return code: * -255, in case of unknown internal error * -4, if internal SVD subroutine haven't converged * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1). * -2, if S[I]<=0 * 1, if subroutine successfully finished LM - linear model in the ALGLIB format. Use subroutines of this unit to work with the model. AR - additional results -- ALGLIB -- Copyright 02.08.2008 by Bochkanov Sergey *************************************************************************)
procedure LRBuildS(const XY : TReal2DArray; const S : TReal1DArray; NPoints : AlglibInteger; NVars : AlglibInteger; var Info : AlglibInteger; var LM : LinearModel; var AR : LRReport);

lrbuildz subroutine

(************************************************************************* Like LRBuild but builds model Y = A(0)*X[0] + ... + A(N-1)*X[N-1] i.e. with zero constant term. -- ALGLIB -- Copyright 30.10.2008 by Bochkanov Sergey *************************************************************************)
procedure LRBuildZ(const XY : TReal2DArray; NPoints : AlglibInteger; NVars : AlglibInteger; var Info : AlglibInteger; var LM : LinearModel; var AR : LRReport);

lrbuildzs subroutine

(************************************************************************* Like LRBuildS, but builds model Y = A(0)*X[0] + ... + A(N-1)*X[N-1] i.e. with zero constant term. -- ALGLIB -- Copyright 30.10.2008 by Bochkanov Sergey *************************************************************************)
procedure LRBuildZS(const XY : TReal2DArray; const S : TReal1DArray; NPoints : AlglibInteger; NVars : AlglibInteger; var Info : AlglibInteger; var LM : LinearModel; var AR : LRReport);

lrcopy subroutine

(************************************************************************* Copying of LinearModel strucure INPUT PARAMETERS: LM1 - original OUTPUT PARAMETERS: LM2 - copy -- ALGLIB -- Copyright 15.03.2009 by Bochkanov Sergey *************************************************************************)
procedure LRCopy(const LM1 : LinearModel; var LM2 : LinearModel);

lrpack subroutine

(************************************************************************* "Packs" coefficients and creates linear model in ALGLIB format (LRUnpack reversed). INPUT PARAMETERS: V - coefficients, array[0..NVars] NVars - number of independent variables OUTPUT PAREMETERS: LM - linear model. -- ALGLIB -- Copyright 30.08.2008 by Bochkanov Sergey *************************************************************************)
procedure LRPack(const V : TReal1DArray; NVars : AlglibInteger; var LM : LinearModel);

lrprocess subroutine

(************************************************************************* Procesing INPUT PARAMETERS: LM - linear model X - input vector, array[0..NVars-1]. Result: value of linear model regression estimate -- ALGLIB -- Copyright 03.09.2008 by Bochkanov Sergey *************************************************************************)
function LRProcess(const LM : LinearModel; const X : TReal1DArray):Double;

lrrmserror subroutine

(************************************************************************* RMS error on the test set INPUT PARAMETERS: LM - linear model XY - test set NPoints - test set size RESULT: root mean square error. -- ALGLIB -- Copyright 30.08.2008 by Bochkanov Sergey *************************************************************************)
function LRRMSError(const LM : LinearModel; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

lrserialize subroutine

(************************************************************************* Serialization of LinearModel strucure INPUT PARAMETERS: LM - original OUTPUT PARAMETERS: RA - array of real numbers which stores model, array[0..RLen-1] RLen - RA lenght -- ALGLIB -- Copyright 15.03.2009 by Bochkanov Sergey *************************************************************************)
procedure LRSerialize(const LM : LinearModel; var RA : TReal1DArray; var RLen : AlglibInteger);

lrunpack subroutine

(************************************************************************* Unpacks coefficients of linear model. INPUT PARAMETERS: LM - linear model in ALGLIB format OUTPUT PARAMETERS: V - coefficients, array[0..NVars] NVars - number of independent variables (one less than number of coefficients) -- ALGLIB -- Copyright 30.08.2008 by Bochkanov Sergey *************************************************************************)
procedure LRUnpack(const LM : LinearModel; var V : TReal1DArray; var NVars : AlglibInteger);

lrunserialize subroutine

(************************************************************************* Unserialization of DecisionForest strucure INPUT PARAMETERS: RA - real array which stores decision forest OUTPUT PARAMETERS: LM - unserialized structure -- ALGLIB -- Copyright 15.03.2009 by Bochkanov Sergey *************************************************************************)
procedure LRUnserialize(const RA : TReal1DArray; var LM : LinearModel);

logit unit

Structures

mnlreport

Subroutines

mnlavgce
mnlavgerror
mnlavgrelerror
mnlclserror
mnlcopy
mnlpack
mnlprocess
mnlrelclserror
mnlrmserror
mnlserialize
mnltrainh
mnlunpack
mnlunserialize

mnlreport structure

(************************************************************************* MNLReport structure contains information about training process: * NGrad - number of gradient calculations * NHess - number of Hessian calculations *************************************************************************)
MNLReport = record NGrad : AlglibInteger; NHess : AlglibInteger; end;

mnlavgce subroutine

(************************************************************************* Average cross-entropy (in bits per element) on the test set INPUT PARAMETERS: LM - logit model XY - test set NPoints - test set size RESULT: CrossEntropy/(NPoints*ln(2)). -- ALGLIB -- Copyright 10.09.2008 by Bochkanov Sergey *************************************************************************)
function MNLAvgCE(var LM : LogitModel; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mnlavgerror subroutine

(************************************************************************* Average error on the test set INPUT PARAMETERS: LM - logit model XY - test set NPoints - test set size RESULT: average error (error when estimating posterior probabilities). -- ALGLIB -- Copyright 30.08.2008 by Bochkanov Sergey *************************************************************************)
function MNLAvgError(var LM : LogitModel; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mnlavgrelerror subroutine

(************************************************************************* Average relative error on the test set INPUT PARAMETERS: LM - logit model XY - test set NPoints - test set size RESULT: average relative error (error when estimating posterior probabilities). -- ALGLIB -- Copyright 30.08.2008 by Bochkanov Sergey *************************************************************************)
function MNLAvgRelError(var LM : LogitModel; const XY : TReal2DArray; SSize : AlglibInteger):Double;

mnlclserror subroutine

(************************************************************************* Classification error on test set = MNLRelClsError*NPoints -- ALGLIB -- Copyright 10.09.2008 by Bochkanov Sergey *************************************************************************)
function MNLClsError(var LM : LogitModel; const XY : TReal2DArray; NPoints : AlglibInteger):AlglibInteger;

mnlcopy subroutine

(************************************************************************* Copying of LogitModel strucure INPUT PARAMETERS: LM1 - original OUTPUT PARAMETERS: LM2 - copy -- ALGLIB -- Copyright 15.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MNLCopy(const LM1 : LogitModel; var LM2 : LogitModel);

mnlpack subroutine

(************************************************************************* "Packs" coefficients and creates logit model in ALGLIB format (MNLUnpack reversed). INPUT PARAMETERS: A - model (see MNLUnpack) NVars - number of independent variables NClasses - number of classes OUTPUT PARAMETERS: LM - logit model. -- ALGLIB -- Copyright 10.09.2008 by Bochkanov Sergey *************************************************************************)
procedure MNLPack(const A : TReal2DArray; NVars : AlglibInteger; NClasses : AlglibInteger; var LM : LogitModel);

mnlprocess subroutine

(************************************************************************* Procesing INPUT PARAMETERS: LM - logit model, passed by non-constant reference (some fields of structure are used as temporaries when calculating model output). X - input vector, array[0..NVars-1]. OUTPUT PARAMETERS: Y - result, array[0..NClasses-1] Vector of posterior probabilities for classification task. Subroutine does not allocate memory for this vector, it is responsibility of a caller to allocate it. Array must be at least [0..NClasses-1]. -- ALGLIB -- Copyright 10.09.2008 by Bochkanov Sergey *************************************************************************)
procedure MNLProcess(var LM : LogitModel; const X : TReal1DArray; var Y : TReal1DArray);

mnlrelclserror subroutine

(************************************************************************* Relative classification error on the test set INPUT PARAMETERS: LM - logit model XY - test set NPoints - test set size RESULT: percent of incorrectly classified cases. -- ALGLIB -- Copyright 10.09.2008 by Bochkanov Sergey *************************************************************************)
function MNLRelClsError(var LM : LogitModel; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mnlrmserror subroutine

(************************************************************************* RMS error on the test set INPUT PARAMETERS: LM - logit model XY - test set NPoints - test set size RESULT: root mean square error (error when estimating posterior probabilities). -- ALGLIB -- Copyright 30.08.2008 by Bochkanov Sergey *************************************************************************)
function MNLRMSError(var LM : LogitModel; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mnlserialize subroutine

(************************************************************************* Serialization of LogitModel strucure INPUT PARAMETERS: LM - original OUTPUT PARAMETERS: RA - array of real numbers which stores model, array[0..RLen-1] RLen - RA lenght -- ALGLIB -- Copyright 15.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MNLSerialize(const LM : LogitModel; var RA : TReal1DArray; var RLen : AlglibInteger);

mnltrainh subroutine

(************************************************************************* This subroutine trains logit model. INPUT PARAMETERS: XY - training set, array[0..NPoints-1,0..NVars] First NVars columns store values of independent variables, next column stores number of class (from 0 to NClasses-1) which dataset element belongs to. Fractional values are rounded to nearest integer. NPoints - training set size, NPoints>=1 NVars - number of independent variables, NVars>=1 NClasses - number of classes, NClasses>=2 OUTPUT PARAMETERS: Info - return code: * -2, if there is a point with class number outside of [0..NClasses-1]. * -1, if incorrect parameters was passed (NPoints<NVars+2, NVars<1, NClasses<2). * 1, if task has been solved LM - model built Rep - training report -- ALGLIB -- Copyright 10.09.2008 by Bochkanov Sergey *************************************************************************)
procedure MNLTrainH(const XY : TReal2DArray; NPoints : AlglibInteger; NVars : AlglibInteger; NClasses : AlglibInteger; var Info : AlglibInteger; var LM : LogitModel; var Rep : MNLReport);

mnlunpack subroutine

(************************************************************************* Unpacks coefficients of logit model. Logit model have form: P(class=i) = S(i) / (S(0) + S(1) + ... +S(M-1)) S(i) = Exp(A[i,0]*X[0] + ... + A[i,N-1]*X[N-1] + A[i,N]), when i<M-1 S(M-1) = 1 INPUT PARAMETERS: LM - logit model in ALGLIB format OUTPUT PARAMETERS: V - coefficients, array[0..NClasses-2,0..NVars] NVars - number of independent variables NClasses - number of classes -- ALGLIB -- Copyright 10.09.2008 by Bochkanov Sergey *************************************************************************)
procedure MNLUnpack(const LM : LogitModel; var A : TReal2DArray; var NVars : AlglibInteger; var NClasses : AlglibInteger);

mnlunserialize subroutine

(************************************************************************* Unserialization of LogitModel strucure INPUT PARAMETERS: RA - real array which stores model OUTPUT PARAMETERS: LM - restored model -- ALGLIB -- Copyright 15.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MNLUnserialize(const RA : TReal1DArray; var LM : LogitModel);

lsfit unit

Structures

lsfitreport

Subroutines

lsfitlinear
lsfitlinearc
lsfitlinearw
lsfitlinearwc
lsfitnonlinearfg
lsfitnonlinearfgh
lsfitnonlineariteration
lsfitnonlinearresults
lsfitnonlinearsetcond
lsfitnonlinearsetstpmax
lsfitnonlinearwfg
lsfitnonlinearwfgh

Examples

lsfit_linear
lsfit_nonlinear
lsfit_nonlinear2

lsfitreport structure

(************************************************************************* Least squares fitting report: TaskRCond reciprocal of task's condition number RMSError RMS error AvgError average error AvgRelError average relative error (for non-zero Y[I]) MaxError maximum error *************************************************************************)
LSFitReport = record TaskRCond : Double; RMSError : Double; AvgError : Double; AvgRelError : Double; MaxError : Double; end;

lsfitlinear subroutine

(************************************************************************* Linear least squares fitting, without weights. See LSFitLinearW for more information. -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitLinear(const Y : TReal1DArray; const FMatrix : TReal2DArray; N : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var C : TReal1DArray; var Rep : LSFitReport);

Examples:   lsfit_linear  

lsfitlinearc subroutine

(************************************************************************* Constained linear least squares fitting, without weights. See LSFitLinearWC() for more information. -- ALGLIB -- Copyright 07.09.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitLinearC(Y : TReal1DArray; const FMatrix : TReal2DArray; const CMatrix : TReal2DArray; N : AlglibInteger; M : AlglibInteger; K : AlglibInteger; var Info : AlglibInteger; var C : TReal1DArray; var Rep : LSFitReport);

Examples:   lsfit_linear  

lsfitlinearw subroutine

(************************************************************************* Weighted linear least squares fitting. QR decomposition is used to reduce task to MxM, then triangular solver or SVD-based solver is used depending on condition number of the system. It allows to maximize speed and retain decent accuracy. INPUT PARAMETERS: Y - array[0..N-1] Function values in N points. W - array[0..N-1] Weights corresponding to function values. Each summand in square sum of approximation deviations from given values is multiplied by the square of corresponding weight. FMatrix - a table of basis functions values, array[0..N-1, 0..M-1]. FMatrix[I, J] - value of J-th basis function in I-th point. N - number of points used. N>=1. M - number of basis functions, M>=1. OUTPUT PARAMETERS: Info - error code: * -4 internal SVD decomposition subroutine failed (very rare and for degenerate systems only) * -1 incorrect N/M were specified * 1 task is solved C - decomposition coefficients, array[0..M-1] Rep - fitting report. Following fields are set: * Rep.TaskRCond reciprocal of condition number * RMSError rms error on the (X,Y). * AvgError average error on the (X,Y). * AvgRelError average relative error on the non-zero Y * MaxError maximum error NON-WEIGHTED ERRORS ARE CALCULATED SEE ALSO LSFitLinear LSFitLinearC LSFitLinearWC -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitLinearW(const Y : TReal1DArray; const W : TReal1DArray; const FMatrix : TReal2DArray; N : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var C : TReal1DArray; var Rep : LSFitReport);

Examples:   lsfit_linear  

lsfitlinearwc subroutine

(************************************************************************* Weighted constained linear least squares fitting. This is variation of LSFitLinearW(), which searchs for min|A*x=b| given that K additional constaints C*x=bc are satisfied. It reduces original task to modified one: min|B*y-d| WITHOUT constraints, then LSFitLinearW() is called. INPUT PARAMETERS: Y - array[0..N-1] Function values in N points. W - array[0..N-1] Weights corresponding to function values. Each summand in square sum of approximation deviations from given values is multiplied by the square of corresponding weight. FMatrix - a table of basis functions values, array[0..N-1, 0..M-1]. FMatrix[I,J] - value of J-th basis function in I-th point. CMatrix - a table of constaints, array[0..K-1,0..M]. I-th row of CMatrix corresponds to I-th linear constraint: CMatrix[I,0]*C[0] + ... + CMatrix[I,M-1]*C[M-1] = CMatrix[I,M] N - number of points used. N>=1. M - number of basis functions, M>=1. K - number of constraints, 0 <= K < M K=0 corresponds to absence of constraints. OUTPUT PARAMETERS: Info - error code: * -4 internal SVD decomposition subroutine failed (very rare and for degenerate systems only) * -3 either too many constraints (M or more), degenerate constraints (some constraints are repetead twice) or inconsistent constraints were specified. * -1 incorrect N/M/K were specified * 1 task is solved C - decomposition coefficients, array[0..M-1] Rep - fitting report. Following fields are set: * RMSError rms error on the (X,Y). * AvgError average error on the (X,Y). * AvgRelError average relative error on the non-zero Y * MaxError maximum error NON-WEIGHTED ERRORS ARE CALCULATED IMPORTANT: this subroitine doesn't calculate task's condition number for K<>0. SEE ALSO LSFitLinear LSFitLinearC LSFitLinearWC -- ALGLIB -- Copyright 07.09.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitLinearWC(Y : TReal1DArray; const W : TReal1DArray; const FMatrix : TReal2DArray; CMatrix : TReal2DArray; N : AlglibInteger; M : AlglibInteger; K : AlglibInteger; var Info : AlglibInteger; var C : TReal1DArray; var Rep : LSFitReport);

Examples:   lsfit_linear  

lsfitnonlinearfg subroutine

(************************************************************************* Nonlinear least squares fitting, no individual weights. See LSFitNonlinearWFG for more information. -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitNonlinearFG(const X : TReal2DArray; const Y : TReal1DArray; const C : TReal1DArray; N : AlglibInteger; M : AlglibInteger; K : AlglibInteger; CheapFG : Boolean; var State : LSFitState);

Examples:   lsfit_nonlinear  

lsfitnonlinearfgh subroutine

(************************************************************************* Nonlinear least squares fitting using gradient/Hessian without individual weights. See LSFitNonlinearWFGH() for more information. -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitNonlinearFGH(const X : TReal2DArray; const Y : TReal1DArray; const C : TReal1DArray; N : AlglibInteger; M : AlglibInteger; K : AlglibInteger; var State : LSFitState);

Examples:   lsfit_nonlinear2  

lsfitnonlineariteration subroutine

(************************************************************************* Nonlinear least squares fitting. Algorithm iteration. Called after inialization of the State structure with LSFitNonlinearXXX() subroutine. See HTML docs for examples. INPUT PARAMETERS: State - structure which stores algorithm state between subsequent calls and which is used for reverse communication. Must be initialized with LSFitNonlinearXXX() call first. RESULT 1. If subroutine returned False, iterative algorithm has converged. 2. If subroutine returned True, then if: * if State.NeedF=True, function value F(X,C) is required * if State.NeedFG=True, function value F(X,C) and gradient dF/dC(X,C) are required * if State.NeedFGH=True function value F(X,C), gradient dF/dC(X,C) and Hessian are required One and only one of this fields can be set at time. Function, its gradient and Hessian are calculated at (X,C), where X is stored in State.X[0..M-1] and C is stored in State.C[0..K-1]. Results are stored: * function value - in State.F * gradient - in State.G[0..K-1] * Hessian - in State.H[0..K-1,0..K-1] -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
function LSFitNonlinearIteration(var State : LSFitState):Boolean;

Examples:   lsfit_nonlinear  lsfit_nonlinear2  

lsfitnonlinearresults subroutine

(************************************************************************* Nonlinear least squares fitting results. Called after LSFitNonlinearIteration() returned False. INPUT PARAMETERS: State - algorithm state (used by LSFitNonlinearIteration). OUTPUT PARAMETERS: Info - completetion code: * -1 incorrect parameters were specified * 1 relative function improvement is no more than EpsF. * 2 relative step is no more than EpsX. * 4 gradient norm is no more than EpsG * 5 MaxIts steps was taken C - array[0..K-1], solution Rep - optimization report. Following fields are set: * Rep.TerminationType completetion code: * RMSError rms error on the (X,Y). * AvgError average error on the (X,Y). * AvgRelError average relative error on the non-zero Y * MaxError maximum error NON-WEIGHTED ERRORS ARE CALCULATED -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitNonlinearResults(const State : LSFitState; var Info : AlglibInteger; var C : TReal1DArray; var Rep : LSFitReport);

Examples:   lsfit_nonlinear  lsfit_nonlinear2  

lsfitnonlinearsetcond subroutine

(************************************************************************* Stopping conditions for nonlinear least squares fitting. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with LSFitNonLinearCreate???() EpsF - stopping criterion. Algorithm stops if |F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1} EpsX - stopping criterion. Algorithm stops if |X(k+1)-X(k)| <= EpsX*(1+|X(k)|) MaxIts - stopping criterion. Algorithm stops after MaxIts iterations. MaxIts=0 means no stopping criterion. NOTE Passing EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic stopping criterion selection (according to the scheme used by MINLM unit). -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitNonlinearSetCond(var State : LSFitState; EpsF : Double; EpsX : Double; MaxIts : AlglibInteger);

lsfitnonlinearsetstpmax subroutine

(************************************************************************* This function sets maximum step length INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with LSFitNonLinearCreate???() StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't want to limit step length. Use this subroutine when you optimize target function which contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow. This function allows us to reject steps that are too large (and therefore expose us to the possible overflow) without actually calculating function value at the x+stp*d. NOTE: non-zero StpMax leads to moderate performance degradation because intermediate step of preconditioned L-BFGS optimization is incompatible with limits on step size. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure LSFitNonlinearSetStpMax(var State : LSFitState; StpMax : Double);

lsfitnonlinearwfg subroutine

(************************************************************************* Weighted nonlinear least squares fitting using gradient and Hessian. Nonlinear task min(F(c)) is solved, where F(c) = (w[0]*(f(x[0],c)-y[0]))^2 + ... + (w[n-1]*(f(x[n-1],c)-y[n-1]))^2, * N is a number of points, * M is a dimension of a space points belong to, * K is a dimension of a space of parameters being fitted, * w is an N-dimensional vector of weight coefficients, * x is a set of N points, each of them is an M-dimensional vector, * c is a K-dimensional vector of parameters being fitted This subroutine uses only f(x[i],c) and its gradient. INPUT PARAMETERS: X - array[0..N-1,0..M-1], points (one row = one point) Y - array[0..N-1], function values. W - weights, array[0..N-1] C - array[0..K-1], initial approximation to the solution, N - number of points, N>1 M - dimension of space K - number of parameters being fitted CheapFG - boolean flag, which is: * True if both function and gradient calculation complexity are less than O(M^2). An improved algorithm can be used which corresponds to FGJ scheme from MINLM unit. * False otherwise. Standard Jacibian-bases Levenberg-Marquardt algo will be used (FJ scheme). OUTPUT PARAMETERS: State - structure which stores algorithm state between subsequent calls of LSFitNonlinearIteration. Used for reverse communication. This structure should be passed to LSFitNonlinearIteration subroutine. See also: LSFitNonlinearIteration LSFitNonlinearResults LSFitNonlinearFG (fitting without weights) LSFitNonlinearWFGH (fitting using Hessian) LSFitNonlinearFGH (fitting using Hessian, without weights) -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitNonlinearWFG(const X : TReal2DArray; const Y : TReal1DArray; const W : TReal1DArray; const C : TReal1DArray; N : AlglibInteger; M : AlglibInteger; K : AlglibInteger; CheapFG : Boolean; var State : LSFitState);

Examples:   lsfit_nonlinear  

lsfitnonlinearwfgh subroutine

(************************************************************************* Weighted nonlinear least squares fitting using gradient/Hessian. Nonlinear task min(F(c)) is solved, where F(c) = (w[0]*(f(x[0],c)-y[0]))^2 + ... + (w[n-1]*(f(x[n-1],c)-y[n-1]))^2, * N is a number of points, * M is a dimension of a space points belong to, * K is a dimension of a space of parameters being fitted, * w is an N-dimensional vector of weight coefficients, * x is a set of N points, each of them is an M-dimensional vector, * c is a K-dimensional vector of parameters being fitted This subroutine uses f(x[i],c), its gradient and its Hessian. See LSFitNonlinearWFG() subroutine for information about function parameters. -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure LSFitNonlinearWFGH(const X : TReal2DArray; const Y : TReal1DArray; const W : TReal1DArray; const C : TReal1DArray; N : AlglibInteger; M : AlglibInteger; K : AlglibInteger; var State : LSFitState);

Examples:   lsfit_nonlinear2  

lsfit_linear example

var
    M : AlglibInteger;
    N : AlglibInteger;
    Y : TReal1DArray;
    FMatrix : TReal2DArray;
    CMatrix : TReal2DArray;
    Rep : LSFitReport;
    Info : AlglibInteger;
    C : TReal1DArray;
    I : AlglibInteger;
    J : AlglibInteger;
    X : Double;
    A : Double;
    B : Double;
begin
    Write(Format(''#13#10''#13#10'Fitting tan(x) by third degree polynomial'#13#10''#13#10'',[]));
    Write(Format('Fit type             rms.err max.err    p(0)   dp(0)'#13#10'',[]));
    
    //
    // Fitting tan(x) at [0, 0.4*pi] by third degree polynomial:
    // a) without constraints
    // b) constrained at x=0: p(0)=0
    // c) constrained at x=0: p'(0)=1
    // c) constrained at x=0: p(0)=0, p'(0)=1
    //
    M := 4;
    N := 100;
    A := 0;
    B := Double(0.4)*Pi;
    
    //
    // Prepare task matrix
    //
    SetLength(Y, N);
    SetLength(FMatrix, N, M);
    I:=0;
    while I<=N-1 do
    begin
        X := A+(B-A)*I/(N-1);
        Y[I] := Tan(X);
        FMatrix[I,0] := Double(1.0);
        J:=1;
        while J<=M-1 do
        begin
            FMatrix[I,J] := X*FMatrix[I,J-1];
            Inc(J);
        end;
        Inc(I);
    end;
    
    //
    // Solve unconstrained task
    //
    LSFitLinear(Y, FMatrix, N, M, Info, C, Rep);
    Write(Format('Unconstrained        %7.4f %7.4f %7.4f %7.4f'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        C[0],
        C[1]]));
    
    //
    // Solve constrained task, p(0)=0
    // Prepare constraints matrix:
    // * first M columns store values of basis functions at X=0
    // * last column stores zero (desired value at X=0)
    //
    SetLength(CMatrix, 1, M+1);
    CMatrix[0,0] := 1;
    I:=1;
    while I<=M-1 do
    begin
        CMatrix[0,I] := 0;
        Inc(I);
    end;
    CMatrix[0,M] := 0;
    LSFitLinearC(Y, FMatrix, CMatrix, N, M, 1, Info, C, Rep);
    Write(Format('Constrained, p(0)=0  %7.4f %7.4f %7.4f %7.4f'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        C[0],
        C[1]]));
    
    //
    // Solve constrained task, p'(0)=0
    // Prepare constraints matrix:
    // * first M columns store derivatives of basis functions at X=0
    // * last column stores 1.0 (desired derivative at X=0)
    //
    SetLength(CMatrix, 1, M+1);
    I:=0;
    while I<=M-1 do
    begin
        CMatrix[0,I] := 0;
        Inc(I);
    end;
    CMatrix[0,1] := 1;
    CMatrix[0,M] := 1;
    LSFitLinearC(Y, FMatrix, CMatrix, N, M, 1, Info, C, Rep);
    Write(Format('Constrained, dp(0)=1 %7.4f %7.4f %7.4f %7.4f'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        C[0],
        C[1]]));
    
    //
    // Solve constrained task, p(0)=0, p'(0)=0
    // Prepare constraints matrix:
    // * first M columns store values/derivatives of basis functions at X=0
    // * last column stores desired values/derivative at X=0
    //
    SetLength(CMatrix, 2, M+1);
    CMatrix[0,0] := 1;
    I:=1;
    while I<=M-1 do
    begin
        CMatrix[0,I] := 0;
        Inc(I);
    end;
    CMatrix[0,M] := 0;
    I:=0;
    while I<=M-1 do
    begin
        CMatrix[1,I] := 0;
        Inc(I);
    end;
    CMatrix[1,1] := 1;
    CMatrix[1,M] := 1;
    LSFitLinearC(Y, FMatrix, CMatrix, N, M, 2, Info, C, Rep);
    Write(Format('Constrained, both    %7.4f %7.4f %7.4f %7.4f'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        C[0],
        C[1]]));
    Write(Format(''#13#10''#13#10'',[]));
end.

lsfit_nonlinear example

var
    M : AlglibInteger;
    N : AlglibInteger;
    K : AlglibInteger;
    Y : TReal1DArray;
    X : TReal2DArray;
    C : TReal1DArray;
    Rep : LSFitReport;
    State : LSFitState;
    Info : AlglibInteger;
    EpsF : Double;
    EpsX : Double;
    MaxIts : AlglibInteger;
    I : AlglibInteger;
    J : AlglibInteger;
    A : Double;
    B : Double;
begin
    Write(Format('Fitting 0.5(1+cos(x)) on [-pi,+pi] with exp(-alpha*x^2)'#13#10'',[]));
    
    //
    // Fitting 0.5(1+cos(x)) on [-pi,+pi] with Gaussian exp(-alpha*x^2):
    // * without Hessian (gradient only)
    // * using alpha=1 as initial value
    // * using 1000 uniformly distributed points to fit to
    //
    // Notes:
    // * N - number of points
    // * M - dimension of space where points reside
    // * K - number of parameters being fitted
    //
    N := 1000;
    M := 1;
    K := 1;
    A := -Pi;
    B := +Pi;
    
    //
    // Prepare task matrix
    //
    SetLength(Y, N);
    SetLength(X, N, M);
    SetLength(C, K);
    I:=0;
    while I<=N-1 do
    begin
        X[I,0] := A+(B-A)*I/(N-1);
        Y[I] := Double(0.5)*(1+Cos(X[I,0]));
        Inc(I);
    end;
    C[0] := Double(1.0);
    EpsF := Double(0.0);
    EpsX := Double(0.0001);
    MaxIts := 0;
    
    //
    // Solve
    //
    LSFitNonlinearFG(X, Y, C, N, M, K, True, State);
    LSFitNonlinearSetCond(State, EpsF, EpsX, MaxIts);
    while LSFitNonlinearIteration(State) do
    begin
        if State.NeedF then
        begin
            
            //
            // F(x) = Exp(-alpha*x^2)
            //
            State.F := Exp(-State.C[0]*AP_Sqr(State.X[0]));
        end;
        if State.NeedFG then
        begin
            
            //
            // F(x)      = Exp(-alpha*x^2)
            // dF/dAlpha = (-x^2)*Exp(-alpha*x^2)
            //
            State.F := Exp(-State.C[0]*AP_Sqr(State.X[0]));
            State.G[0] := -AP_Sqr(State.X[0])*State.F;
        end;
    end;
    LSFitNonlinearResults(State, Info, C, Rep);
    Write(Format('alpha:   %0.3f'#13#10'',[
        C[0]]));
    Write(Format('rms.err: %0.3f'#13#10'',[
        Rep.RMSError]));
    Write(Format('max.err: %0.3f'#13#10'',[
        Rep.MaxError]));
    Write(Format('Termination type: %0d'#13#10'',[
        Info]));
    Write(Format(''#13#10''#13#10'',[]));
end.

lsfit_nonlinear2 example

var
    M : AlglibInteger;
    N : AlglibInteger;
    K : AlglibInteger;
    Y : TReal1DArray;
    X : TReal2DArray;
    C : TReal1DArray;
    Rep : LSFitReport;
    State : LSFitState;
    Info : AlglibInteger;
    EpsF : Double;
    EpsX : Double;
    MaxIts : AlglibInteger;
    I : AlglibInteger;
    J : AlglibInteger;
    A : Double;
    B : Double;
begin
    Write(Format('Fitting 1-x^2 on [-1,+1] with cos(alpha*pi*x)+beta'#13#10'',[]));
    
    //
    // Fitting 1-x^2 on [-1,+1] with cos(alpha*pi*x)+beta:
    // * using Hessian
    // * using alpha=1 and beta=0 as initial values
    // * using 1000 uniformly distributed points to fit to
    //
    // Notes:
    // * N - number of points
    // * M - dimension of space where points reside
    // * K - number of parameters being fitted
    //
    N := 1000;
    M := 1;
    K := 2;
    A := -1;
    B := +1;
    
    //
    // Prepare task matrix
    //
    SetLength(Y, N);
    SetLength(X, N, M);
    SetLength(C, K);
    I:=0;
    while I<=N-1 do
    begin
        X[I,0] := A+(B-A)*I/(N-1);
        Y[I] := 1-AP_Sqr(X[I,0]);
        Inc(I);
    end;
    C[0] := Double(1.0);
    C[1] := Double(0.0);
    EpsF := Double(0.0);
    EpsX := Double(0.0001);
    MaxIts := 0;
    
    //
    // Solve
    //
    LSFitNonlinearFGH(X, Y, C, N, M, K, State);
    LSFitNonlinearSetCond(State, EpsF, EpsX, MaxIts);
    while LSFitNonlinearIteration(State) do
    begin
        
        //
        // F(x) = Cos(alpha*pi*x)+beta
        //
        State.F := Cos(State.C[0]*Pi*State.X[0])+State.C[1];
        
        //
        // F(x)      = Cos(alpha*pi*x)+beta
        // dF/dAlpha = -pi*x*Sin(alpha*pi*x)
        // dF/dBeta  = 1.0
        //
        if State.NeedFG or State.NeedFGH then
        begin
            State.G[0] := -Pi*State.X[0]*Sin(State.C[0]*Pi*State.X[0]);
            State.G[1] := Double(1.0);
        end;
        
        //
        // F(x)            = Cos(alpha*pi*x)+beta
        // d2F/dAlpha2     = -(pi*x)^2*Cos(alpha*pi*x)
        // d2F/dAlphadBeta = 0
        // d2F/dBeta2     =  0
        //
        if State.NeedFGH then
        begin
            State.H[0,0] := -AP_Sqr(Pi*State.X[0])*Cos(State.C[0]*Pi*State.X[0]);
            State.H[0,1] := Double(0.0);
            State.H[1,0] := Double(0.0);
            State.H[1,1] := Double(0.0);
        end;
    end;
    LSFitNonlinearResults(State, Info, C, Rep);
    Write(Format('alpha:   %0.3f'#13#10'',[
        C[0]]));
    Write(Format('beta:    %0.3f'#13#10'',[
        C[1]]));
    Write(Format('rms.err: %0.3f'#13#10'',[
        Rep.RMSError]));
    Write(Format('max.err: %0.3f'#13#10'',[
        Rep.MaxError]));
    Write(Format('Termination type: %0d'#13#10'',[
        Info]));
    Write(Format(''#13#10''#13#10'',[]));
end.

mannwhitneyu unit

Subroutines

mannwhitneyutest

mannwhitneyutest subroutine

(************************************************************************* Mann-Whitney U-test This test checks hypotheses about whether X and Y are samples of two continuous distributions of the same shape and same median or whether their medians are different. The following tests are performed: * two-tailed test (null hypothesis - the medians are equal) * left-tailed test (null hypothesis - the median of the first sample is greater than or equal to the median of the second sample) * right-tailed test (null hypothesis - the median of the first sample is less than or equal to the median of the second sample). Requirements: * the samples are independent * X and Y are continuous distributions (or discrete distributions well- approximating continuous distributions) * distributions of X and Y have the same shape. The only possible difference is their position (i.e. the value of the median) * the number of elements in each sample is not less than 5 * the scale of measurement should be ordinal, interval or ratio (i.e. the test could not be applied to nominal variables). The test is non-parametric and doesn't require distributions to be normal. Input parameters: X - sample 1. Array whose index goes from 0 to N-1. N - size of the sample. N>=5 Y - sample 2. Array whose index goes from 0 to M-1. M - size of the sample. M>=5 Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. To calculate p-values, special approximation is used. This method lets us calculate p-values with satisfactory accuracy in interval [0.0001, 1]. There is no approximation outside the [0.0001, 1] interval. Therefore, if the significance level outlies this interval, the test returns 0.0001. Relative precision of approximation of p-value: N M Max.err. Rms.err. 5..10 N..10 1.4e-02 6.0e-04 5..10 N..100 2.2e-02 5.3e-06 10..15 N..15 1.0e-02 3.2e-04 10..15 N..100 1.0e-02 2.2e-05 15..100 N..100 6.1e-03 2.7e-06 For N,M>100 accuracy checks weren't put into practice, but taking into account characteristics of asymptotic approximation used, precision should not be sharply different from the values for interval [5, 100]. -- ALGLIB -- Copyright 09.04.2007 by Bochkanov Sergey *************************************************************************)
procedure MannWhitneyUTest(const X : TReal1DArray; N : AlglibInteger; const Y : TReal1DArray; M : AlglibInteger; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

matdet unit

Subroutines

cmatrixdet
cmatrixludet
rmatrixdet
rmatrixludet
spdmatrixcholeskydet
spdmatrixdet

cmatrixdet subroutine

(************************************************************************* Calculation of the determinant of a general matrix Input parameters: A - matrix, array[0..N-1, 0..N-1] N - size of matrix A. Result: determinant of matrix A. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
function CMatrixDet(A : TComplex2DArray; N : AlglibInteger):Complex;

cmatrixludet subroutine

(************************************************************************* Determinant calculation of the matrix given by its LU decomposition. Input parameters: A - LU decomposition of the matrix (output of RMatrixLU subroutine). Pivots - table of permutations which were made during the LU decomposition. Output of RMatrixLU subroutine. N - size of matrix A. Result: matrix determinant. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
function CMatrixLUDet(const A : TComplex2DArray; const Pivots : TInteger1DArray; N : AlglibInteger):Complex;

rmatrixdet subroutine

(************************************************************************* Calculation of the determinant of a general matrix Input parameters: A - matrix, array[0..N-1, 0..N-1] N - size of matrix A. Result: determinant of matrix A. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
function RMatrixDet(A : TReal2DArray; N : AlglibInteger):Double;

rmatrixludet subroutine

(************************************************************************* Determinant calculation of the matrix given by its LU decomposition. Input parameters: A - LU decomposition of the matrix (output of RMatrixLU subroutine). Pivots - table of permutations which were made during the LU decomposition. Output of RMatrixLU subroutine. N - size of matrix A. Result: matrix determinant. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
function RMatrixLUDet(const A : TReal2DArray; const Pivots : TInteger1DArray; N : AlglibInteger):Double;

spdmatrixcholeskydet subroutine

(************************************************************************* Determinant calculation of the matrix given by the Cholesky decomposition. Input parameters: A - Cholesky decomposition, output of SMatrixCholesky subroutine. N - size of matrix A. As the determinant is equal to the product of squares of diagonal elements, it’s not necessary to specify which triangle - lower or upper - the matrix is stored in. Result: matrix determinant. -- ALGLIB -- Copyright 2005-2008 by Bochkanov Sergey *************************************************************************)
function SPDMatrixCholeskyDet(const A : TReal2DArray; N : AlglibInteger):Double;

spdmatrixdet subroutine

(************************************************************************* Determinant calculation of the symmetric positive definite matrix. Input parameters: A - matrix. Array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - if IsUpper = True, then the symmetric matrix A is given by its upper triangle, and the lower triangle isn’t used by subroutine. Similarly, if IsUpper = False, then A is given by its lower triangle. Result: determinant of matrix A. If matrix A is not positive definite, then subroutine returns -1. -- ALGLIB -- Copyright 2005-2008 by Bochkanov Sergey *************************************************************************)
function SPDMatrixDet(A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean):Double;

matgen unit

Subroutines

cmatrixrndcond
cmatrixrndorthogonal
cmatrixrndorthogonalfromtheleft
cmatrixrndorthogonalfromtheright
hmatrixrndcond
hmatrixrndmultiply
hpdmatrixrndcond
rmatrixrndcond
rmatrixrndorthogonal
rmatrixrndorthogonalfromtheleft
rmatrixrndorthogonalfromtheright
smatrixrndcond
smatrixrndmultiply
spdmatrixrndcond

cmatrixrndcond subroutine

(************************************************************************* Generation of random NxN complex matrix with given condition number C and norm2(A)=1 INPUT PARAMETERS: N - matrix size C - condition number (in 2-norm) OUTPUT PARAMETERS: A - random matrix with norm2(A)=1 and cond(A)=C -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure CMatrixRndCond(N : AlglibInteger; C : Double; var A : TComplex2DArray);

cmatrixrndorthogonal subroutine

(************************************************************************* Generation of a random Haar distributed orthogonal complex matrix INPUT PARAMETERS: N - matrix size, N>=1 OUTPUT PARAMETERS: A - orthogonal NxN matrix, array[0..N-1,0..N-1] -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure CMatrixRndOrthogonal(N : AlglibInteger; var A : TComplex2DArray);

cmatrixrndorthogonalfromtheleft subroutine

(************************************************************************* Multiplication of MxN complex matrix by MxM random Haar distributed complex orthogonal matrix INPUT PARAMETERS: A - matrix, array[0..M-1, 0..N-1] M, N- matrix size OUTPUT PARAMETERS: A - Q*A, where Q is random MxM orthogonal matrix -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure CMatrixRndOrthogonalFromTheLeft(var A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger);

cmatrixrndorthogonalfromtheright subroutine

(************************************************************************* Multiplication of MxN complex matrix by NxN random Haar distributed complex orthogonal matrix INPUT PARAMETERS: A - matrix, array[0..M-1, 0..N-1] M, N- matrix size OUTPUT PARAMETERS: A - A*Q, where Q is random NxN orthogonal matrix -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure CMatrixRndOrthogonalFromTheRight(var A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger);

hmatrixrndcond subroutine

(************************************************************************* Generation of random NxN Hermitian matrix with given condition number and norm2(A)=1 INPUT PARAMETERS: N - matrix size C - condition number (in 2-norm) OUTPUT PARAMETERS: A - random matrix with norm2(A)=1 and cond(A)=C -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure HMatrixRndCond(N : AlglibInteger; C : Double; var A : TComplex2DArray);

hmatrixrndmultiply subroutine

(************************************************************************* Hermitian multiplication of NxN matrix by random Haar distributed complex orthogonal matrix INPUT PARAMETERS: A - matrix, array[0..N-1, 0..N-1] N - matrix size OUTPUT PARAMETERS: A - Q^H*A*Q, where Q is random NxN orthogonal matrix -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure HMatrixRndMultiply(var A : TComplex2DArray; N : AlglibInteger);

hpdmatrixrndcond subroutine

(************************************************************************* Generation of random NxN Hermitian positive definite matrix with given condition number and norm2(A)=1 INPUT PARAMETERS: N - matrix size C - condition number (in 2-norm) OUTPUT PARAMETERS: A - random HPD matrix with norm2(A)=1 and cond(A)=C -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure HPDMatrixRndCond(N : AlglibInteger; C : Double; var A : TComplex2DArray);

rmatrixrndcond subroutine

(************************************************************************* Generation of random NxN matrix with given condition number and norm2(A)=1 INPUT PARAMETERS: N - matrix size C - condition number (in 2-norm) OUTPUT PARAMETERS: A - random matrix with norm2(A)=1 and cond(A)=C -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure RMatrixRndCond(N : AlglibInteger; C : Double; var A : TReal2DArray);

rmatrixrndorthogonal subroutine

(************************************************************************* Generation of a random uniformly distributed (Haar) orthogonal matrix INPUT PARAMETERS: N - matrix size, N>=1 OUTPUT PARAMETERS: A - orthogonal NxN matrix, array[0..N-1,0..N-1] -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure RMatrixRndOrthogonal(N : AlglibInteger; var A : TReal2DArray);

rmatrixrndorthogonalfromtheleft subroutine

(************************************************************************* Multiplication of MxN matrix by MxM random Haar distributed orthogonal matrix INPUT PARAMETERS: A - matrix, array[0..M-1, 0..N-1] M, N- matrix size OUTPUT PARAMETERS: A - Q*A, where Q is random MxM orthogonal matrix -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure RMatrixRndOrthogonalFromTheLeft(var A : TReal2DArray; M : AlglibInteger; N : AlglibInteger);

rmatrixrndorthogonalfromtheright subroutine

(************************************************************************* Multiplication of MxN matrix by NxN random Haar distributed orthogonal matrix INPUT PARAMETERS: A - matrix, array[0..M-1, 0..N-1] M, N- matrix size OUTPUT PARAMETERS: A - A*Q, where Q is random NxN orthogonal matrix -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure RMatrixRndOrthogonalFromTheRight(var A : TReal2DArray; M : AlglibInteger; N : AlglibInteger);

smatrixrndcond subroutine

(************************************************************************* Generation of random NxN symmetric matrix with given condition number and norm2(A)=1 INPUT PARAMETERS: N - matrix size C - condition number (in 2-norm) OUTPUT PARAMETERS: A - random matrix with norm2(A)=1 and cond(A)=C -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure SMatrixRndCond(N : AlglibInteger; C : Double; var A : TReal2DArray);

smatrixrndmultiply subroutine

(************************************************************************* Symmetric multiplication of NxN matrix by random Haar distributed orthogonal matrix INPUT PARAMETERS: A - matrix, array[0..N-1, 0..N-1] N - matrix size OUTPUT PARAMETERS: A - Q'*A*Q, where Q is random NxN orthogonal matrix -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure SMatrixRndMultiply(var A : TReal2DArray; N : AlglibInteger);

spdmatrixrndcond subroutine

(************************************************************************* Generation of random NxN symmetric positive definite matrix with given condition number and norm2(A)=1 INPUT PARAMETERS: N - matrix size C - condition number (in 2-norm) OUTPUT PARAMETERS: A - random SPD matrix with norm2(A)=1 and cond(A)=C -- ALGLIB routine -- 04.12.2009 Bochkanov Sergey *************************************************************************)
procedure SPDMatrixRndCond(N : AlglibInteger; C : Double; var A : TReal2DArray);

matinv unit

Subroutines

cmatrixinverse
cmatrixluinverse
cmatrixtrinverse
hpdmatrixcholeskyinverse
hpdmatrixinverse
rmatrixinverse
rmatrixluinverse
rmatrixtrinverse
spdmatrixcholeskyinverse
spdmatrixinverse

cmatrixinverse subroutine

(************************************************************************* Inversion of a general matrix. Input parameters: A - matrix, array[0..N-1,0..N-1]. N - size of A. Output parameters: Info - return code, same as in RMatrixLUInverse Rep - solver report, same as in RMatrixLUInverse A - inverse of matrix A, same as in RMatrixLUInverse -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
procedure CMatrixInverse(var A : TComplex2DArray; N : AlglibInteger; var Info : AlglibInteger; var Rep : MatInvReport);

cmatrixluinverse subroutine

(************************************************************************* Inversion of a matrix given by its LU decomposition. INPUT PARAMETERS: A - LU decomposition of the matrix (output of CMatrixLU subroutine). Pivots - table of permutations which were made during the LU decomposition (the output of CMatrixLU subroutine). N - size of matrix A. OUTPUT PARAMETERS: Info - return code, same as in RMatrixLUInverse Rep - solver report, same as in RMatrixLUInverse A - inverse of matrix A, same as in RMatrixLUInverse -- ALGLIB routine -- 05.02.2010 Bochkanov Sergey *************************************************************************)
procedure CMatrixLUInverse(var A : TComplex2DArray; const Pivots : TInteger1DArray; N : AlglibInteger; var Info : AlglibInteger; var Rep : MatInvReport);

cmatrixtrinverse subroutine

(************************************************************************* Triangular matrix inverse (complex) The subroutine inverts the following types of matrices: * upper triangular * upper triangular with unit diagonal * lower triangular * lower triangular with unit diagonal In case of an upper (lower) triangular matrix, the inverse matrix will also be upper (lower) triangular, and after the end of the algorithm, the inverse matrix replaces the source matrix. The elements below (above) the main diagonal are not changed by the algorithm. If the matrix has a unit diagonal, the inverse matrix also has a unit diagonal, and the diagonal elements are not passed to the algorithm. Input parameters: A - matrix, array[0..N-1, 0..N-1]. N - size of A. IsUpper - True, if the matrix is upper triangular. IsUnit - True, if the matrix has a unit diagonal. Output parameters: Info - same as for RMatrixLUInverse Rep - same as for RMatrixLUInverse A - same as for RMatrixLUInverse. -- ALGLIB -- Copyright 05.02.2010 by Bochkanov Sergey *************************************************************************)
procedure CMatrixTRInverse(var A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean; var Info : AlglibInteger; var Rep : MatInvReport);

hpdmatrixcholeskyinverse subroutine

(************************************************************************* Inversion of a Hermitian positive definite matrix which is given by Cholesky decomposition. Input parameters: A - Cholesky decomposition of the matrix to be inverted: A=U’*U or A = L*L'. Output of HPDMatrixCholesky subroutine. N - size of matrix A. IsUpper – storage format. If IsUpper = True, then matrix A is given as A = U'*U (matrix contains upper triangle). Similarly, if IsUpper = False, then A = L*L'. Output parameters: Info - return code, same as in RMatrixLUInverse Rep - solver report, same as in RMatrixLUInverse A - inverse of matrix A, same as in RMatrixLUInverse -- ALGLIB routine -- 10.02.2010 Bochkanov Sergey *************************************************************************)
procedure HPDMatrixCholeskyInverse(var A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; var Info : AlglibInteger; var Rep : MatInvReport);

hpdmatrixinverse subroutine

(************************************************************************* Inversion of a Hermitian positive definite matrix. Given an upper or lower triangle of a Hermitian positive definite matrix, the algorithm generates matrix A^-1 and saves the upper or lower triangle depending on the input. Input parameters: A - matrix to be inverted (upper or lower triangle). Array with elements [0..N-1,0..N-1]. N - size of matrix A. IsUpper - storage format. If IsUpper = True, then the upper triangle of matrix A is given, otherwise the lower triangle is given. Output parameters: Info - return code, same as in RMatrixLUInverse Rep - solver report, same as in RMatrixLUInverse A - inverse of matrix A, same as in RMatrixLUInverse -- ALGLIB routine -- 10.02.2010 Bochkanov Sergey *************************************************************************)
procedure HPDMatrixInverse(var A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; var Info : AlglibInteger; var Rep : MatInvReport);

rmatrixinverse subroutine

(************************************************************************* Inversion of a general matrix. Input parameters: A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. Output parameters: Info - return code, same as in RMatrixLUInverse Rep - solver report, same as in RMatrixLUInverse A - inverse of matrix A, same as in RMatrixLUInverse Result: True, if the matrix is not singular. False, if the matrix is singular. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
procedure RMatrixInverse(var A : TReal2DArray; N : AlglibInteger; var Info : AlglibInteger; var Rep : MatInvReport);

rmatrixluinverse subroutine

(************************************************************************* Inversion of a matrix given by its LU decomposition. INPUT PARAMETERS: A - LU decomposition of the matrix (output of RMatrixLU subroutine). Pivots - table of permutations which were made during the LU decomposition (the output of RMatrixLU subroutine). N - size of matrix A. OUTPUT PARAMETERS: Info - return code: * -3 A is singular, or VERY close to singular. it is filled by zeros in such cases. * -1 N<=0 was passed, or incorrect Pivots was passed * 1 task is solved (but matrix A may be ill-conditioned, check R1/RInf parameters for condition numbers). Rep - solver report, see below for more info A - inverse of matrix A. Array whose indexes range within [0..N-1, 0..N-1]. SOLVER REPORT Subroutine sets following fields of the Rep structure: * R1 reciprocal of condition number: 1/cond(A), 1-norm. * RInf reciprocal of condition number: 1/cond(A), inf-norm. -- ALGLIB routine -- 05.02.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixLUInverse(var A : TReal2DArray; const Pivots : TInteger1DArray; N : AlglibInteger; var Info : AlglibInteger; var Rep : MatInvReport);

rmatrixtrinverse subroutine

(************************************************************************* Triangular matrix inverse (real) The subroutine inverts the following types of matrices: * upper triangular * upper triangular with unit diagonal * lower triangular * lower triangular with unit diagonal In case of an upper (lower) triangular matrix, the inverse matrix will also be upper (lower) triangular, and after the end of the algorithm, the inverse matrix replaces the source matrix. The elements below (above) the main diagonal are not changed by the algorithm. If the matrix has a unit diagonal, the inverse matrix also has a unit diagonal, and the diagonal elements are not passed to the algorithm. Input parameters: A - matrix, array[0..N-1, 0..N-1]. N - size of A. IsUpper - True, if the matrix is upper triangular. IsUnit - True, if the matrix has a unit diagonal. Output parameters: Info - same as for RMatrixLUInverse Rep - same as for RMatrixLUInverse A - same as for RMatrixLUInverse. -- ALGLIB -- Copyright 05.02.2010 by Bochkanov Sergey *************************************************************************)
procedure RMatrixTRInverse(var A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean; var Info : AlglibInteger; var Rep : MatInvReport);

spdmatrixcholeskyinverse subroutine

(************************************************************************* Inversion of a symmetric positive definite matrix which is given by Cholesky decomposition. Input parameters: A - Cholesky decomposition of the matrix to be inverted: A=U’*U or A = L*L'. Output of SPDMatrixCholesky subroutine. N - size of matrix A. IsUpper – storage format. If IsUpper = True, then matrix A is given as A = U'*U (matrix contains upper triangle). Similarly, if IsUpper = False, then A = L*L'. Output parameters: Info - return code, same as in RMatrixLUInverse Rep - solver report, same as in RMatrixLUInverse A - inverse of matrix A, same as in RMatrixLUInverse -- ALGLIB routine -- 10.02.2010 Bochkanov Sergey *************************************************************************)
procedure SPDMatrixCholeskyInverse(var A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; var Info : AlglibInteger; var Rep : MatInvReport);

spdmatrixinverse subroutine

(************************************************************************* Inversion of a symmetric positive definite matrix. Given an upper or lower triangle of a symmetric positive definite matrix, the algorithm generates matrix A^-1 and saves the upper or lower triangle depending on the input. Input parameters: A - matrix to be inverted (upper or lower triangle). Array with elements [0..N-1,0..N-1]. N - size of matrix A. IsUpper - storage format. If IsUpper = True, then the upper triangle of matrix A is given, otherwise the lower triangle is given. Output parameters: Info - return code, same as in RMatrixLUInverse Rep - solver report, same as in RMatrixLUInverse A - inverse of matrix A, same as in RMatrixLUInverse -- ALGLIB routine -- 10.02.2010 Bochkanov Sergey *************************************************************************)
procedure SPDMatrixInverse(var A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; var Info : AlglibInteger; var Rep : MatInvReport);

minasa unit

Subroutines

minasacreate
minasaiteration
minasaresults
minasasetalgorithm
minasasetcond
minasasetstpmax
minasasetxrep

Examples

minasa_1
minasa_2

minasacreate subroutine

(************************************************************************* NONLINEAR BOUND CONSTRAINED OPTIMIZATION USING MODIFIED WILLIAM W. HAGER AND HONGCHAO ZHANG ACTIVE SET ALGORITHM The subroutine minimizes function F(x) of N arguments with bound constraints: BndL[i] <= x[i] <= BndU[i] This method is globally convergent as long as grad(f) is Lipschitz continuous on a level set: L = { x : f(x)<=f(x0) }. INPUT PARAMETERS: N - problem dimension. N>0 X - initial solution approximation, array[0..N-1]. BndL - lower bounds, array[0..N-1]. all elements MUST be specified, i.e. all variables are bounded. However, if some (all) variables are unbounded, you may specify very small number as bound: -1000, -1.0E6 or -1.0E300, or something like that. BndU - upper bounds, array[0..N-1]. all elements MUST be specified, i.e. all variables are bounded. However, if some (all) variables are unbounded, you may specify very large number as bound: +1000, +1.0E6 or +1.0E300, or something like that. EpsG - positive number which defines a precision of search. The subroutine finishes its work if the condition ||G|| < EpsG is satisfied, where ||.|| means Euclidian norm, G - gradient, X - current approximation. EpsF - positive number which defines a precision of search. The subroutine finishes its work if on iteration number k+1 the condition |F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1} is satisfied. EpsX - positive number which defines a precision of search. The subroutine finishes its work if on iteration number k+1 the condition |X(k+1)-X(k)| <= EpsX is fulfilled. MaxIts - maximum number of iterations. If MaxIts=0, the number of iterations is unlimited. OUTPUT PARAMETERS: State - structure used for reverse communication. This function initializes State structure with default optimization parameters (stopping conditions, step size, etc.). Use MinASASet??????() functions to tune optimization parameters. After all optimization parameters are tuned, you should use MinASAIteration() function to advance algorithm iterations. NOTES: 1. you may tune stopping conditions with MinASASetCond() function 2. if target function contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow, use MinASASetStpMax() function to bound algorithm's steps. -- ALGLIB -- Copyright 25.03.2010 by Bochkanov Sergey *************************************************************************)
procedure MinASACreate(N : AlglibInteger; const X : TReal1DArray; const BndL : TReal1DArray; const BndU : TReal1DArray; var State : MinASAState);

Examples:   minasa_1  minasa_2  

minasaiteration subroutine

(************************************************************************* One ASA iteration Called after initialization with MinASACreate. See HTML documentation for examples. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinASACreate. RESULT: * if function returned False, iterative proces has converged. Use MinLBFGSResults() to obtain optimization results. * if subroutine returned True, then, depending on structure fields, we have one of the following situations === FUNC/GRAD REQUEST === State.NeedFG is True => function value/gradient are needed. Caller should calculate function value State.F and gradient State.G[0..N-1] at State.X[0..N-1] and call MinLBFGSIteration() again. === NEW INTERATION IS REPORTED === State.XUpdated is True => one more iteration was made. State.X contains current position, State.F contains function value at X. You can read info from these fields, but never modify them because they contain the only copy of optimization algorithm state. One and only one of these fields (NeedFG, XUpdated) is true on return. New iterations are reported only when reports are explicitly turned on by MinLBFGSSetXRep() function, so if you never called it, you can expect that NeedFG is always True. -- ALGLIB -- Copyright 20.03.2009 by Bochkanov Sergey *************************************************************************)
function MinASAIteration(var State : MinASAState):Boolean;

Examples:   minasa_1  minasa_2  

minasaresults subroutine

(************************************************************************* Conjugate gradient results Called after MinASA returned False. INPUT PARAMETERS: State - algorithm state (used by MinASAIteration). OUTPUT PARAMETERS: X - array[0..N-1], solution Rep - optimization report: * Rep.TerminationType completetion code: * -2 rounding errors prevent further improvement. X contains best point found. * -1 incorrect parameters were specified * 1 relative function improvement is no more than EpsF. * 2 relative step is no more than EpsX. * 4 gradient norm is no more than EpsG * 5 MaxIts steps was taken * 7 stopping conditions are too stringent, further improvement is impossible * Rep.IterationsCount contains iterations count * NFEV countains number of function calculations * ActiveConstraints contains number of active constraints -- ALGLIB -- Copyright 20.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MinASAResults(const State : MinASAState; var X : TReal1DArray; var Rep : MinASAReport);

Examples:   minasa_1  minasa_2  

minasasetalgorithm subroutine

(************************************************************************* This function sets optimization algorithm. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinASACreate() UAType - algorithm type: * -1 automatic selection of the best algorithm * 0 DY (Dai and Yuan) algorithm * 1 Hybrid DY-HS algorithm -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinASASetAlgorithm(var State : MinASAState; AlgoType : AlglibInteger);

minasasetcond subroutine

(************************************************************************* This function sets stopping conditions for the ASA optimization algorithm. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinASACreate() EpsG - >=0 The subroutine finishes its work if the condition ||G||<EpsG is satisfied, where ||.|| means Euclidian norm, G - gradient. EpsF - >=0 The subroutine finishes its work if on k+1-th iteration the condition |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1} is satisfied. EpsX - >=0 The subroutine finishes its work if on k+1-th iteration the condition |X(k+1)-X(k)| <= EpsX is fulfilled. MaxIts - maximum number of iterations. If MaxIts=0, the number of iterations is unlimited. Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic stopping criterion selection (small EpsX). -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinASASetCond(var State : MinASAState; EpsG : Double; EpsF : Double; EpsX : Double; MaxIts : AlglibInteger);

minasasetstpmax subroutine

(************************************************************************* This function sets maximum step length INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinCGCreate() StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't want to limit step length. Use this subroutine when you optimize target function which contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow. This function allows us to reject steps that are too large (and therefore expose us to the possible overflow) without actually calculating function value at the x+stp*d. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinASASetStpMax(var State : MinASAState; StpMax : Double);

minasasetxrep subroutine

(************************************************************************* This function turns on/off reporting. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinASACreate() NeedXRep- whether iteration reports are needed or not Usually algorithm returns from MinASAIteration() only when it needs function/gradient. However, with this function we can let it stop after each iteration (one iteration may include more than one function evaluation), which is indicated by XUpdated field. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinASASetXRep(var State : MinASAState; NeedXRep : Boolean);

minasa_1 example

var
    N : AlglibInteger;
    I : AlglibInteger;
    State : MinASAState;
    Rep : MinASAReport;
    S : TReal1DArray;
    BndL : TReal1DArray;
    BndU : TReal1DArray;
    X : Double;
    Y : Double;
    Z : Double;
begin
    
    //
    // Function being minimized:
    //     F = x+2y+3z subject to 0<=x<=1, 0<=y<=1, 0<=z<=1.
    //
    N := 3;
    SetLength(S, N);
    SetLength(BndL, N);
    SetLength(BndU, N);
    I:=0;
    while I<=N-1 do
    begin
        S[I] := 1;
        BndL[I] := 0;
        BndU[I] := 1;
        Inc(I);
    end;
    MinASACreate(N, S, BndL, BndU, State);
    MinASASetCond(State, Double(0.0), Double(0.0), Double(0.00001), 0);
    MinASASetXRep(State, True);
    Write(Format(''#13#10''#13#10'F = x+2y+3z subject to 0<=x<=1, 0<=y<=1, 0<=z<=1'#13#10'',[]));
    Write(Format('OPTIMIZATION STARTED'#13#10'',[]));
    while MinASAIteration(State) do
    begin
        if State.NeedFG then
        begin
            X := State.X[0];
            Y := State.X[1];
            Z := State.X[2];
            State.F := X+2*Y+3*Z;
            State.G[0] := 1;
            State.G[1] := 2;
            State.G[2] := 3;
        end;
        if State.XUpdated then
        begin
            Write(Format('    F(%4.2f,%4.2f,%4.2f)=%0.3f'#13#10'',[
                State.X[0],
                State.X[1],
                State.X[2],
                State.F]));
        end;
    end;
    Write(Format('OPTIMIZATION STOPPED'#13#10'',[]));
    MinASAResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('X = %4.2f (should be 0.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (should be 0.00)'#13#10'',[
        S[1]]));
    Write(Format('Z = %4.2f (should be 0.00)'#13#10''#13#10''#13#10'',[
        S[2]]));
end.

minasa_2 example

var
    N : AlglibInteger;
    I : AlglibInteger;
    State : MinASAState;
    Rep : MinASAReport;
    S : TReal1DArray;
    BndL : TReal1DArray;
    BndU : TReal1DArray;
    X : Double;
    Y : Double;
    Z : Double;
begin
    
    //
    // Function being minimized:
    //     F = x+4y+9z subject to 0<=x<=1, 0<=y<=1, 0<=z<=1.
    //
    // Take a look at MinASASetStpMax() - it restricts step length by
    // a small value, so we can see the current point traveling through
    // a feasible set, sticking to its bounds.
    //
    N := 3;
    SetLength(S, N);
    SetLength(BndL, N);
    SetLength(BndU, N);
    I:=0;
    while I<=N-1 do
    begin
        S[I] := 1;
        BndL[I] := 0;
        BndU[I] := 1;
        Inc(I);
    end;
    MinASACreate(N, S, BndL, BndU, State);
    MinASASetCond(State, Double(0.0), Double(0.0), Double(0.00001), 0);
    MinASASetXRep(State, True);
    MinASASetStpMax(State, Double(0.2));
    Write(Format(''#13#10''#13#10'F = x+4y+9z subject to 0<=x<=1, 0<=y<=1, 0<=z<=1'#13#10'',[]));
    Write(Format('OPTIMIZATION STARTED'#13#10'',[]));
    while MinASAIteration(State) do
    begin
        if State.NeedFG then
        begin
            X := State.X[0];
            Y := State.X[1];
            Z := State.X[2];
            State.F := X+4*Y+9*Z;
            State.G[0] := 1;
            State.G[1] := 4;
            State.G[2] := 9;
        end;
        if State.XUpdated then
        begin
            Write(Format('    F(%4.2f, %4.2f, %4.2f) = %0.3f'#13#10'',[
                State.X[0],
                State.X[1],
                State.X[2],
                State.F]));
        end;
    end;
    Write(Format('OPTIMIZATION STOPPED'#13#10'',[]));
    MinASAResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('X = %4.2f (should be 0.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (should be 0.00)'#13#10'',[
        S[1]]));
    Write(Format('Z = %4.2f (should be 0.00)'#13#10''#13#10''#13#10'',[
        S[2]]));
end.

mincg unit

Subroutines

mincgcreate
mincgiteration
mincgresults
mincgsetcgtype
mincgsetcond
mincgsetstpmax
mincgsetxrep

Examples

mincg_1
mincg_2

mincgcreate subroutine

(************************************************************************* NONLINEAR CONJUGATE GRADIENT METHOD The subroutine minimizes function F(x) of N arguments by using one of the nonlinear conjugate gradient methods. These CG methods are globally convergent (even on non-convex functions) as long as grad(f) is Lipschitz continuous in a some neighborhood of the L = { x : f(x)<=f(x0) }. INPUT PARAMETERS: N - problem dimension. N>0 X - initial solution approximation, array[0..N-1]. EpsG - positive number which defines a precision of search. The subroutine finishes its work if the condition ||G|| < EpsG is satisfied, where ||.|| means Euclidian norm, G - gradient, X - current approximation. EpsF - positive number which defines a precision of search. The subroutine finishes its work if on iteration number k+1 the condition |F(k+1)-F(k)| <= EpsF*max{|F(k)|, |F(k+1)|, 1} is satisfied. EpsX - positive number which defines a precision of search. The subroutine finishes its work if on iteration number k+1 the condition |X(k+1)-X(k)| <= EpsX is fulfilled. MaxIts - maximum number of iterations. If MaxIts=0, the number of iterations is unlimited. OUTPUT PARAMETERS: State - structure used for reverse communication. See also MinCGIteration, MinCGResults NOTE: Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic stopping criterion selection (small EpsX). -- ALGLIB -- Copyright 25.03.2010 by Bochkanov Sergey *************************************************************************)
procedure MinCGCreate(N : AlglibInteger; const X : TReal1DArray; var State : MinCGState);

Examples:   mincg_2  mincg_1  

mincgiteration subroutine

(************************************************************************* One conjugate gradient iteration Called after initialization with MinCG. See HTML documentation for examples. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinCG. RESULT: * if function returned False, iterative proces has converged. Use MinLBFGSResults() to obtain optimization results. * if subroutine returned True, then, depending on structure fields, we have one of the following situations === FUNC/GRAD REQUEST === State.NeedFG is True => function value/gradient are needed. Caller should calculate function value State.F and gradient State.G[0..N-1] at State.X[0..N-1] and call MinLBFGSIteration() again. === NEW INTERATION IS REPORTED === State.XUpdated is True => one more iteration was made. State.X contains current position, State.F contains function value at X. You can read info from these fields, but never modify them because they contain the only copy of optimization algorithm state. One and only one of these fields (NeedFG, XUpdated) is true on return. New iterations are reported only when reports are explicitly turned on by MinLBFGSSetXRep() function, so if you never called it, you can expect that NeedFG is always True. -- ALGLIB -- Copyright 20.04.2009 by Bochkanov Sergey *************************************************************************)
function MinCGIteration(var State : MinCGState):Boolean;

Examples:   mincg_2  mincg_1  

mincgresults subroutine

(************************************************************************* Conjugate gradient results Called after MinCG returned False. INPUT PARAMETERS: State - algorithm state (used by MinCGIteration). OUTPUT PARAMETERS: X - array[0..N-1], solution Rep - optimization report: * Rep.TerminationType completetion code: * -2 rounding errors prevent further improvement. X contains best point found. * -1 incorrect parameters were specified * 1 relative function improvement is no more than EpsF. * 2 relative step is no more than EpsX. * 4 gradient norm is no more than EpsG * 5 MaxIts steps was taken * 7 stopping conditions are too stringent, further improvement is impossible * Rep.IterationsCount contains iterations count * NFEV countains number of function calculations -- ALGLIB -- Copyright 20.04.2009 by Bochkanov Sergey *************************************************************************)
procedure MinCGResults(const State : MinCGState; var X : TReal1DArray; var Rep : MinCGReport);

Examples:   mincg_2  mincg_1  

mincgsetcgtype subroutine

(************************************************************************* This function sets CG algorithm. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinCGCreate() CGType - algorithm type: * -1 automatic selection of the best algorithm * 0 DY (Dai and Yuan) algorithm * 1 Hybrid DY-HS algorithm -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinCGSetCGType(var State : MinCGState; CGType : AlglibInteger);

mincgsetcond subroutine

(************************************************************************* This function sets stopping conditions for CG optimization algorithm. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinCGCreate() EpsG - >=0 The subroutine finishes its work if the condition ||G||<EpsG is satisfied, where ||.|| means Euclidian norm, G - gradient. EpsF - >=0 The subroutine finishes its work if on k+1-th iteration the condition |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1} is satisfied. EpsX - >=0 The subroutine finishes its work if on k+1-th iteration the condition |X(k+1)-X(k)| <= EpsX is fulfilled. MaxIts - maximum number of iterations. If MaxIts=0, the number of iterations is unlimited. Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic stopping criterion selection (small EpsX). -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinCGSetCond(var State : MinCGState; EpsG : Double; EpsF : Double; EpsX : Double; MaxIts : AlglibInteger);

mincgsetstpmax subroutine

(************************************************************************* This function sets maximum step length INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinCGCreate() StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't want to limit step length. Use this subroutine when you optimize target function which contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow. This function allows us to reject steps that are too large (and therefore expose us to the possible overflow) without actually calculating function value at the x+stp*d. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinCGSetStpMax(var State : MinCGState; StpMax : Double);

mincgsetxrep subroutine

(************************************************************************* This function turns on/off reporting. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinCGCreate() NeedXRep- whether iteration reports are needed or not Usually algorithm returns from MinCGIteration() only when it needs function/gradient. However, with this function we can let it stop after each iteration (one iteration may include more than one function evaluation), which is indicated by XUpdated field. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinCGSetXRep(var State : MinCGState; NeedXRep : Boolean);

mincg_1 example

var
    N : AlglibInteger;
    State : MinCGState;
    Rep : MinCGReport;
    S : TReal1DArray;
    X : Double;
    Y : Double;
begin
    
    //
    // Function minimized:
    //     F = (x-1)^4 + (y-x)^2
    // N = 2 - task dimension.
    //
    N := 2;
    SetLength(S, 2);
    S[0] := 10;
    S[1] := 11;
    MinCGCreate(N, S, State);
    MinCGSetCond(State, Double(0.0), Double(0.0), Double(0.00001), 0);
    MinCGSetXRep(State, True);
    Write(Format(''#13#10''#13#10'F = (x-1)^4 + (y-x)^2'#13#10'',[]));
    Write(Format('OPTIMIZATION STARTED'#13#10'',[]));
    while MinCGIteration(State) do
    begin
        if State.NeedFG then
        begin
            X := State.X[0];
            Y := State.X[1];
            State.F := AP_Sqr(AP_Sqr(X-1))+AP_Sqr(Y-X);
            State.G[0] := 4*AP_Sqr(X-1)*(X-1)+2*(X-Y);
            State.G[1] := 2*(Y-X);
        end;
        if State.XUpdated then
        begin
            Write(Format('    F(%8.5f,%8.5f)=%0.5f'#13#10'',[
                State.X[0],
                State.X[1],
                State.F]));
        end;
    end;
    Write(Format('OPTIMIZATION STOPPED'#13#10'',[]));
    MinCGResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('X = %4.2f (should be 1.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (should be 1.00)'#13#10''#13#10''#13#10'',[
        S[1]]));
end.

mincg_2 example

var
    N : AlglibInteger;
    State : MinCGState;
    Rep : MinCGReport;
    S : TReal1DArray;
    X : Double;
    Y : Double;
begin
    
    //
    // Function minimized:
    //     F = exp(x-1) + exp(1-x) + (y-x)^2
    // N = 2 - task dimension.
    //
    // Take a look at MinCGSetStpMax() call - it prevents us
    // from overflow (which may be result of too large step).
    // Try to comment it and see what will happen.
    //
    N := 2;
    SetLength(S, 2);
    S[0] := 10;
    S[1] := RandomReal-Double(0.5);
    MinCGCreate(N, S, State);
    MinCGSetCond(State, Double(0.0), Double(0.0), Double(0.0001), 0);
    MinCGSetXRep(State, True);
    MinCGSetStpMax(State, Double(1.0));
    Write(Format(''#13#10''#13#10'F = exp(x-1) + exp(1-x) + (y-x)^2'#13#10'',[]));
    Write(Format('OPTIMIZATION STARTED'#13#10'',[]));
    while MinCGIteration(State) do
    begin
        if State.NeedFG then
        begin
            X := State.X[0];
            Y := State.X[1];
            State.F := Exp(X-1)+Exp(1-X)+AP_Sqr(Y-X);
            State.G[0] := Exp(X-1)-Exp(1-X)+2*(X-Y);
            State.G[1] := 2*(Y-X);
        end;
        if State.XUpdated then
        begin
            Write(Format('    F(%8.5f,%8.5f)=%0.5f'#13#10'',[
                State.X[0],
                State.X[1],
                State.F]));
        end;
    end;
    Write(Format('OPTIMIZATION STOPPED'#13#10'',[]));
    MinCGResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('X = %4.2f (should be 1.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (should be 1.00)'#13#10''#13#10''#13#10'',[
        S[1]]));
end.

minlbfgs unit

Subroutines

minlbfgscreate
minlbfgscreatex
minlbfgsiteration
minlbfgsresults
minlbfgssetcond
minlbfgssetstpmax
minlbfgssetxrep

Examples

minlbfgs_1
minlbfgs_2

minlbfgscreate subroutine

(************************************************************************* LIMITED MEMORY BFGS METHOD FOR LARGE SCALE OPTIMIZATION The subroutine minimizes function F(x) of N arguments by using a quasi- Newton method (LBFGS scheme) which is optimized to use a minimum amount of memory. The subroutine generates the approximation of an inverse Hessian matrix by using information about the last M steps of the algorithm (instead of N). It lessens a required amount of memory from a value of order N^2 to a value of order 2*N*M. INPUT PARAMETERS: N - problem dimension. N>0 M - number of corrections in the BFGS scheme of Hessian approximation update. Recommended value: 3<=M<=7. The smaller value causes worse convergence, the bigger will not cause a considerably better convergence, but will cause a fall in the performance. M<=N. X - initial solution approximation, array[0..N-1]. OUTPUT PARAMETERS: State - structure used for reverse communication. This function initializes State structure with default optimization parameters (stopping conditions, step size, etc.). Use MinLBFGSSet??????() functions to tune optimization parameters. After all optimization parameters are tuned, you should use MinLBFGSIteration() function to advance algorithm iterations. NOTES: 1. you may tune stopping conditions with MinLBFGSSetCond() function 2. if target function contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow, use MinLBFGSSetStpMax() function to bound algorithm's steps. However, L-BFGS rarely needs such a tuning. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLBFGSCreate(N : AlglibInteger; M : AlglibInteger; const X : TReal1DArray; var State : MinLBFGSState);

Examples:   minlbfgs_1  minlbfgs_2  

minlbfgscreatex subroutine

(************************************************************************* Extended subroutine for internal use only. Accepts additional parameters: Flags - additional settings: * Flags = 0 means no additional settings * Flags = 1 "do not allocate memory". used when solving a many subsequent tasks with same N/M values. First call MUST be without this flag bit set, subsequent calls of MinLBFGS with same MinLBFGSState structure can set Flags to 1. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLBFGSCreateX(N : AlglibInteger; M : AlglibInteger; const X : TReal1DArray; Flags : AlglibInteger; var State : MinLBFGSState);

minlbfgsiteration subroutine

(************************************************************************* L-BFGS iterations Called after initialization with MinLBFGSCreate() function. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinLBFGSCreate() RESULT: * if function returned False, iterative proces has converged. Use MinLBFGSResults() to obtain optimization results. * if subroutine returned True, then, depending on structure fields, we have one of the following situations === FUNC/GRAD REQUEST === State.NeedFG is True => function value/gradient are needed. Caller should calculate function value State.F and gradient State.G[0..N-1] at State.X[0..N-1] and call MinLBFGSIteration() again. === NEW INTERATION IS REPORTED === State.XUpdated is True => one more iteration was made. State.X contains current position, State.F contains function value at X. You can read info from these fields, but never modify them because they contain the only copy of optimization algorithm state. One and only one of these fields (NeedFG, XUpdated) is true on return. New iterations are reported only when reports are explicitly turned on by MinLBFGSSetXRep() function, so if you never called it, you can expect that NeedFG is always True. -- ALGLIB -- Copyright 20.03.2009 by Bochkanov Sergey *************************************************************************)
function MinLBFGSIteration(var State : MinLBFGSState):Boolean;

Examples:   minlbfgs_1  minlbfgs_2  

minlbfgsresults subroutine

(************************************************************************* L-BFGS algorithm results Called after MinLBFGSIteration() returned False. INPUT PARAMETERS: State - algorithm state (used by MinLBFGSIteration). OUTPUT PARAMETERS: X - array[0..N-1], solution Rep - optimization report: * Rep.TerminationType completetion code: * -2 rounding errors prevent further improvement. X contains best point found. * -1 incorrect parameters were specified * 1 relative function improvement is no more than EpsF. * 2 relative step is no more than EpsX. * 4 gradient norm is no more than EpsG * 5 MaxIts steps was taken * 7 stopping conditions are too stringent, further improvement is impossible * Rep.IterationsCount contains iterations count * NFEV countains number of function calculations -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLBFGSResults(const State : MinLBFGSState; var X : TReal1DArray; var Rep : MinLBFGSReport);

Examples:   minlbfgs_1  minlbfgs_2  

minlbfgssetcond subroutine

(************************************************************************* This function sets stopping conditions for L-BFGS optimization algorithm. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinLBFGSCreate() EpsG - >=0 The subroutine finishes its work if the condition ||G||<EpsG is satisfied, where ||.|| means Euclidian norm, G - gradient. EpsF - >=0 The subroutine finishes its work if on k+1-th iteration the condition |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1} is satisfied. EpsX - >=0 The subroutine finishes its work if on k+1-th iteration the condition |X(k+1)-X(k)| <= EpsX is fulfilled. MaxIts - maximum number of iterations. If MaxIts=0, the number of iterations is unlimited. Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic stopping criterion selection (small EpsX). -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLBFGSSetCond(var State : MinLBFGSState; EpsG : Double; EpsF : Double; EpsX : Double; MaxIts : AlglibInteger);

minlbfgssetstpmax subroutine

(************************************************************************* This function sets maximum step length INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinLBFGSCreate() StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't want to limit step length. Use this subroutine when you optimize target function which contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow. This function allows us to reject steps that are too large (and therefore expose us to the possible overflow) without actually calculating function value at the x+stp*d. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLBFGSSetStpMax(var State : MinLBFGSState; StpMax : Double);

minlbfgssetxrep subroutine

(************************************************************************* This function turns on/off reporting. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinLBFGSCreate() NeedXRep- whether iteration reports are needed or not Usually algorithm returns from MinLBFGSIteration() only when it needs function/gradient/ (which is indicated by NeedFG field. However, with this function we can let it stop after each iteration (one iteration may include more than one function evaluation), which is indicated by XUpdated field. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLBFGSSetXRep(var State : MinLBFGSState; NeedXRep : Boolean);

minlbfgs_1 example

var
    N : AlglibInteger;
    M : AlglibInteger;
    State : MinLBFGSState;
    Rep : MinLBFGSReport;
    S : TReal1DArray;
    X : Double;
    Y : Double;
begin
    
    //
    // Function minimized:
    //     F = exp(x-1) + exp(1-x) + (y-x)^2
    // N = 2 - task dimension
    // M = 1 - build tank-1 model
    //
    N := 2;
    M := 1;
    SetLength(S, 2);
    S[0] := RandomReal-Double(0.5);
    S[1] := RandomReal-Double(0.5);
    MinLBFGSCreate(N, M, S, State);
    MinLBFGSSetCond(State, Double(0.0), Double(0.0), Double(0.0001), 0);
    while MinLBFGSIteration(State) do
    begin
        if State.NeedFG then
        begin
            X := State.X[0];
            Y := State.X[1];
            State.F := Exp(X-1)+Exp(1-X)+AP_Sqr(Y-X);
            State.G[0] := Exp(X-1)-Exp(1-X)+2*(X-Y);
            State.G[1] := 2*(Y-X);
        end;
    end;
    MinLBFGSResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format(''#13#10''#13#10'F = exp(x-1) + exp(1-x) + (y-x)^2'#13#10'',[]));
    Write(Format('X = %4.2f (should be 1.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (should be 1.00)'#13#10''#13#10''#13#10'',[
        S[1]]));
end.

minlbfgs_2 example

var
    N : AlglibInteger;
    M : AlglibInteger;
    State : MinLBFGSState;
    Rep : MinLBFGSReport;
    S : TReal1DArray;
    X : Double;
    Y : Double;
begin
    
    //
    // Function minimized:
    //     F = exp(x-1) + exp(1-x) + (y-x)^2
    // N = 2 - task dimension
    // M = 1 - build tank-1 model
    //
    N := 2;
    M := 1;
    SetLength(S, 2);
    S[0] := 10;
    S[1] := RandomReal-Double(0.5);
    MinLBFGSCreate(N, M, S, State);
    MinLBFGSSetCond(State, Double(0.0), Double(0.0), Double(0.0001), 0);
    MinLBFGSSetXRep(State, True);
    Write(Format(''#13#10''#13#10'F = exp(x-1) + exp(1-x) + (y-x)^2'#13#10'',[]));
    Write(Format('OPTIMIZATION STARTED'#13#10'',[]));
    while MinLBFGSIteration(State) do
    begin
        if State.NeedFG then
        begin
            X := State.X[0];
            Y := State.X[1];
            State.F := Exp(X-1)+Exp(1-X)+AP_Sqr(Y-X);
            State.G[0] := Exp(X-1)-Exp(1-X)+2*(X-Y);
            State.G[1] := 2*(Y-X);
        end;
        if State.XUpdated then
        begin
            Write(Format('    F(%8.5f,%8.5f)=%0.5f'#13#10'',[
                State.X[0],
                State.X[1],
                State.F]));
        end;
    end;
    Write(Format('OPTIMIZATION STOPPED'#13#10'',[]));
    MinLBFGSResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('X = %4.2f (should be 1.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (should be 1.00)'#13#10''#13#10''#13#10'',[
        S[1]]));
end.

minlm unit

Subroutines

minlmcreatefgh
minlmcreatefgj
minlmcreatefj
minlmiteration
minlmresults
minlmsetcond
minlmsetstpmax
minlmsetxrep

Examples

minlm_fgh
minlm_fgj
minlm_fj
minlm_fj2

minlmcreatefgh subroutine

(************************************************************************* LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION Optimization using function gradient and Hessian. Algorithm - Levenberg- Marquardt modification with L-BFGS pre-optimization and internal pre-conditioned L-BFGS optimization after each Levenberg-Marquardt step. Function F has general form (not "sum-of-squares"): F = F(x[0], ..., x[n-1]) EXAMPLE See HTML-documentation. INPUT PARAMETERS: N - dimension, N>1 X - initial solution, array[0..N-1] OUTPUT PARAMETERS: State - structure which stores algorithm state between subsequent calls of MinLMIteration. Used for reverse communication. This structure should be passed to MinLMIteration subroutine. See also MinLMIteration, MinLMResults. NOTES: 1. you may tune stopping conditions with MinLMSetCond() function 2. if target function contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow, use MinLMSetStpMax() function to bound algorithm's steps. -- ALGLIB -- Copyright 30.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MinLMCreateFGH(const N : AlglibInteger; const X : TReal1DArray; var State : MinLMState);

Examples:   minlm_fgh  

minlmcreatefgj subroutine

(************************************************************************* LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION Optimization using function gradient and Jacobian. Algorithm - Levenberg- Marquardt modification with L-BFGS pre-optimization and internal pre-conditioned L-BFGS optimization after each Levenberg-Marquardt step. Function F is represented as sum of squares: F = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1]) EXAMPLE See HTML-documentation. INPUT PARAMETERS: N - dimension, N>1 M - number of functions f[i] X - initial solution, array[0..N-1] OUTPUT PARAMETERS: State - structure which stores algorithm state between subsequent calls of MinLMIteration. Used for reverse communication. This structure should be passed to MinLMIteration subroutine. See also MinLMIteration, MinLMResults. NOTES: 1. you may tune stopping conditions with MinLMSetCond() function 2. if target function contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow, use MinLMSetStpMax() function to bound algorithm's steps. -- ALGLIB -- Copyright 30.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MinLMCreateFGJ(const N : AlglibInteger; const M : AlglibInteger; const X : TReal1DArray; var State : MinLMState);

Examples:   minlm_fgj  

minlmcreatefj subroutine

(************************************************************************* CLASSIC LEVENBERG-MARQUARDT METHOD FOR NON-LINEAR OPTIMIZATION Optimization using Jacobi matrix. Algorithm - classic Levenberg-Marquardt method. Function F is represented as sum of squares: F = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1]) EXAMPLE See HTML-documentation. INPUT PARAMETERS: N - dimension, N>1 M - number of functions f[i] X - initial solution, array[0..N-1] OUTPUT PARAMETERS: State - structure which stores algorithm state between subsequent calls of MinLMIteration. Used for reverse communication. This structure should be passed to MinLMIteration subroutine. See also MinLMIteration, MinLMResults. NOTES: 1. you may tune stopping conditions with MinLMSetCond() function 2. if target function contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow, use MinLMSetStpMax() function to bound algorithm's steps. -- ALGLIB -- Copyright 30.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MinLMCreateFJ(const N : AlglibInteger; const M : AlglibInteger; const X : TReal1DArray; var State : MinLMState);

Examples:   minlm_fj  minlm_fj2  

minlmiteration subroutine

(************************************************************************* One Levenberg-Marquardt iteration. Called after inialization of State structure with MinLMXXX subroutine. See HTML docs for examples. Input parameters: State - structure which stores algorithm state between subsequent calls and which is used for reverse communication. Must be initialized with MinLMXXX call first. If subroutine returned False, iterative algorithm has converged. If subroutine returned True, then: * if State.NeedF=True, - function value F at State.X[0..N-1] is required * if State.NeedFG=True - function value F and gradient G are required * if State.NeedFiJ=True - function vector f[i] and Jacobi matrix J are required * if State.NeedFGH=True - function value F, gradient G and Hesian H are required * if State.XUpdated=True - algorithm reports about new iteration, State.X contains current point, State.F contains function value. One and only one of this fields can be set at time. Results are stored: * function value - in MinLMState.F * gradient - in MinLMState.G[0..N-1] * Jacobi matrix - in MinLMState.J[0..M-1,0..N-1] * Hessian - in MinLMState.H[0..N-1,0..N-1] -- ALGLIB -- Copyright 10.03.2009 by Bochkanov Sergey *************************************************************************)
function MinLMIteration(var State : MinLMState):Boolean;

Examples:   minlm_fgh  minlm_fgj  minlm_fj  minlm_fj2  

minlmresults subroutine

(************************************************************************* Levenberg-Marquardt algorithm results Called after MinLMIteration returned False. Input parameters: State - algorithm state (used by MinLMIteration). Output parameters: X - array[0..N-1], solution Rep - optimization report: * Rep.TerminationType completetion code: * -1 incorrect parameters were specified * 1 relative function improvement is no more than EpsF. * 2 relative step is no more than EpsX. * 4 gradient is no more than EpsG. * 5 MaxIts steps was taken * 7 stopping conditions are too stringent, further improvement is impossible * Rep.IterationsCount contains iterations count * Rep.NFunc - number of function calculations * Rep.NJac - number of Jacobi matrix calculations * Rep.NGrad - number of gradient calculations * Rep.NHess - number of Hessian calculations * Rep.NCholesky - number of Cholesky decomposition calculations -- ALGLIB -- Copyright 10.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MinLMResults(const State : MinLMState; var X : TReal1DArray; var Rep : MinLMReport);

Examples:   minlm_fgh  minlm_fgj  minlm_fj  minlm_fj2  

minlmsetcond subroutine

(************************************************************************* This function sets stopping conditions for Levenberg-Marquardt optimization algorithm. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinLMCreate???() EpsG - >=0 The subroutine finishes its work if the condition ||G||<EpsG is satisfied, where ||.|| means Euclidian norm, G - gradient. EpsF - >=0 The subroutine finishes its work if on k+1-th iteration the condition |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1} is satisfied. EpsX - >=0 The subroutine finishes its work if on k+1-th iteration the condition |X(k+1)-X(k)| <= EpsX is fulfilled. MaxIts - maximum number of iterations. If MaxIts=0, the number of iterations is unlimited. Only Levenberg-Marquardt iterations are counted (L-BFGS/CG iterations are NOT counted because their cost is very low copared to that of LM). Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to automatic stopping criterion selection (small EpsX). -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLMSetCond(var State : MinLMState; EpsG : Double; EpsF : Double; EpsX : Double; MaxIts : AlglibInteger);

minlmsetstpmax subroutine

(************************************************************************* This function sets maximum step length INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinCGCreate???() StpMax - maximum step length, >=0. Set StpMax to 0.0, if you don't want to limit step length. Use this subroutine when you optimize target function which contains exp() or other fast growing functions, and optimization algorithm makes too large steps which leads to overflow. This function allows us to reject steps that are too large (and therefore expose us to the possible overflow) without actually calculating function value at the x+stp*d. NOTE: non-zero StpMax leads to moderate performance degradation because intermediate step of preconditioned L-BFGS optimization is incompatible with limits on step size. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLMSetStpMax(var State : MinLMState; StpMax : Double);

minlmsetxrep subroutine

(************************************************************************* This function turns on/off reporting. INPUT PARAMETERS: State - structure which stores algorithm state between calls and which is used for reverse communication. Must be initialized with MinLMCreate???() NeedXRep- whether iteration reports are needed or not Usually algorithm returns from MinLMIteration() only when it needs function/gradient/Hessian. However, with this function we can let it stop after each iteration (one iteration may include more than one function evaluation), which is indicated by XUpdated field. Both Levenberg-Marquardt and L-BFGS iterations are reported. -- ALGLIB -- Copyright 02.04.2010 by Bochkanov Sergey *************************************************************************)
procedure MinLMSetXRep(var State : MinLMState; NeedXRep : Boolean);

minlm_fgh example

var
    State : MinLMState;
    Rep : MinLMReport;
    S : TReal1DArray;
    X : Double;
    Y : Double;
begin
    
    //
    // Example of solving simple task using FGH scheme.
    //
    // Function minimized:
    //     F = (x-2*y)^2 + (x-2)^2 + (y-1)^2
    // exact solution is (2,1).
    //
    SetLength(S, 2);
    S[0] := RandomReal-Double(0.5);
    S[1] := RandomReal-Double(0.5);
    MinLMCreateFGH(2, S, State);
    MinLMSetCond(State, Double(0.0), Double(0.0), Double(0.001), 0);
    while MinLMIteration(State) do
    begin
        X := State.X[0];
        Y := State.X[1];
        if State.NeedF then
        begin
            State.F := AP_Sqr(X-2*Y)+AP_Sqr(X-2)+AP_Sqr(Y-1);
        end;
        if State.NeedFG then
        begin
            State.F := AP_Sqr(X-2*Y)+AP_Sqr(X-2)+AP_Sqr(Y-1);
            State.G[0] := 2*(X-2*Y)+2*(X-2)+0;
            State.G[1] := -4*(X-2*Y)+0+2*(Y-1);
        end;
        if State.NeedFGH then
        begin
            State.F := AP_Sqr(X-2*Y)+AP_Sqr(X-2)+AP_Sqr(Y-1);
            State.G[0] := 2*(X-2*Y)+2*(X-2)+0;
            State.G[1] := -4*(X-2*Y)+0+2*(Y-1);
            State.H[0,0] := 4;
            State.H[1,0] := -4;
            State.H[0,1] := -4;
            State.H[1,1] := 10;
        end;
    end;
    MinLMResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('X = %4.2f (correct value - 2.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (correct value - 1.00)'#13#10'',[
        S[1]]));
    Write(Format('TerminationType = %0d (should be 2 - stopping when step is small enough)'#13#10'',[
        Rep.TerminationType]));
    Write(Format('NFunc = %0d'#13#10'',[
        Rep.NFunc]));
    Write(Format('NJac  = %0d'#13#10'',[
        Rep.NJac]));
    Write(Format('NGrad = %0d'#13#10'',[
        Rep.NGrad]));
    Write(Format('NHess = %0d'#13#10'',[
        Rep.NHess]));
end.

minlm_fgj example

var
    State : MinLMState;
    Rep : MinLMReport;
    S : TReal1DArray;
    X : Double;
    Y : Double;
begin
    
    //
    // Example of solving simple task using FGJ scheme.
    //
    // Function minimized:
    //     F = (x-2*y)^2 + (x-2)^2 + (y-1)^2
    // exact solution is (2,1).
    //
    SetLength(S, 2);
    S[0] := RandomReal-Double(0.5);
    S[1] := RandomReal-Double(0.5);
    MinLMCreateFGJ(2, 3, S, State);
    MinLMSetCond(State, Double(0.0), Double(0.0), Double(0.001), 0);
    while MinLMIteration(State) do
    begin
        X := State.X[0];
        Y := State.X[1];
        if State.NeedF then
        begin
            State.F := AP_Sqr(X-2*Y)+AP_Sqr(X-2)+AP_Sqr(Y-1);
        end;
        if State.NeedFG then
        begin
            State.F := AP_Sqr(X-2*Y)+AP_Sqr(X-2)+AP_Sqr(Y-1);
            State.G[0] := 2*(X-2*Y)+2*(X-2)+0;
            State.G[1] := -4*(X-2*Y)+0+2*(Y-1);
        end;
        if State.NeedFiJ then
        begin
            State.Fi[0] := X-2*Y;
            State.Fi[1] := X-2;
            State.Fi[2] := Y-1;
            State.J[0,0] := 1;
            State.J[0,1] := -2;
            State.J[1,0] := 1;
            State.J[1,1] := 0;
            State.J[2,0] := 0;
            State.J[2,1] := 1;
        end;
    end;
    MinLMResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('X = %4.2f (correct value - 2.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (correct value - 1.00)'#13#10'',[
        S[1]]));
    Write(Format('TerminationType = %0d (should be 2 - stopping when step is small enough)'#13#10'',[
        Rep.TerminationType]));
    Write(Format('NFunc = %0d'#13#10'',[
        Rep.NFunc]));
    Write(Format('NJac  = %0d'#13#10'',[
        Rep.NJac]));
    Write(Format('NGrad = %0d'#13#10'',[
        Rep.NGrad]));
    Write(Format('NHess = %0d'#13#10'',[
        Rep.NHess]));
end.

minlm_fj example

var
    State : MinLMState;
    Rep : MinLMReport;
    S : TReal1DArray;
    X : Double;
    Y : Double;
begin
    
    //
    // Example of solving simple task using FJ scheme.
    //
    // Function minimized:
    //     F = (x-2*y)^2 + (x-2)^2 + (y-1)^2
    // exact solution is (2,1).
    //
    SetLength(S, 2);
    S[0] := RandomReal-Double(0.5);
    S[1] := RandomReal-Double(0.5);
    MinLMCreateFJ(2, 3, S, State);
    MinLMSetCond(State, Double(0.0), Double(0.0), Double(0.001), 0);
    while MinLMIteration(State) do
    begin
        X := State.X[0];
        Y := State.X[1];
        if State.NeedF then
        begin
            State.F := AP_Sqr(X-2*Y)+AP_Sqr(X-2)+AP_Sqr(Y-1);
        end;
        if State.NeedFiJ then
        begin
            State.Fi[0] := X-2*Y;
            State.Fi[1] := X-2;
            State.Fi[2] := Y-1;
            State.J[0,0] := 1;
            State.J[0,1] := -2;
            State.J[1,0] := 1;
            State.J[1,1] := 0;
            State.J[2,0] := 0;
            State.J[2,1] := 1;
        end;
    end;
    MinLMResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('X = %4.2f (correct value - 2.00)'#13#10'',[
        S[0]]));
    Write(Format('Y = %4.2f (correct value - 1.00)'#13#10'',[
        S[1]]));
    Write(Format('TerminationType = %0d (should be 2 - stopping when step is small enough)'#13#10'',[
        Rep.TerminationType]));
    Write(Format('NFunc = %0d'#13#10'',[
        Rep.NFunc]));
    Write(Format('NJac  = %0d'#13#10'',[
        Rep.NJac]));
    Write(Format('NGrad = %0d'#13#10'',[
        Rep.NGrad]));
    Write(Format('NHess = %0d'#13#10'',[
        Rep.NHess]));
end.

minlm_fj2 example

var
    State : MinLMState;
    Rep : MinLMReport;
    I : AlglibInteger;
    S : TReal1DArray;
    X : TReal1DArray;
    Y : TReal1DArray;
    FI : Double;
    N : AlglibInteger;
    M : AlglibInteger;
begin
    
    //
    // Example of solving polynomial approximation task using FJ scheme.
    //
    // Data points:
    //     xi are random numbers from [-1,+1],
    //
    // Function being fitted:
    //     yi = exp(xi) - sin(xi) - x^3/3
    //
    // Function being minimized:
    //     F(a,b,c) =
    //         (a + b*x0 + c*x0^2 - y0)^2 +
    //         (a + b*x1 + c*x1^2 - y1)^2 + ...
    //
    N := 3;
    SetLength(S, N);
    I:=0;
    while I<=N-1 do
    begin
        S[I] := RandomReal-Double(0.5);
        Inc(I);
    end;
    M := 100;
    SetLength(X, M);
    SetLength(Y, M);
    I:=0;
    while I<=M-1 do
    begin
        X[I] := AP_Double(2*I)/(M-1)-1;
        Y[I] := Exp(X[I])-Sin(X[I])-X[I]*X[I]*X[I]/3;
        Inc(I);
    end;
    
    //
    // Now S stores starting point, X and Y store points being fitted.
    //
    MinLMCreateFJ(N, M, S, State);
    MinLMSetCond(State, Double(0.0), Double(0.0), Double(0.001), 0);
    while MinLMIteration(State) do
    begin
        if State.NeedF then
        begin
            State.F := 0;
        end;
        I:=0;
        while I<=M-1 do
        begin
            
            //
            // "a" is stored in State.X[0]
            // "b" - State.X[1]
            // "c" - State.X[2]
            //
            FI := State.X[0]+State.X[1]*X[I]+State.X[2]*AP_Sqr(X[I])-Y[I];
            if State.NeedF then
            begin
                
                //
                // F is equal to sum of fi squared.
                //
                State.F := State.F+AP_Sqr(FI);
            end;
            if State.NeedFiJ then
            begin
                
                //
                // Fi
                //
                State.Fi[I] := FI;
                
                //
                // dFi/da
                //
                State.J[I,0] := 1;
                
                //
                // dFi/db
                //
                State.J[I,1] := X[I];
                
                //
                // dFi/dc
                //
                State.J[I,2] := AP_Sqr(X[I]);
            end;
            Inc(I);
        end;
    end;
    MinLMResults(State, S, Rep);
    
    //
    // output results
    //
    Write(Format('A = %4.2f'#13#10'',[
        S[0]]));
    Write(Format('B = %4.2f'#13#10'',[
        S[1]]));
    Write(Format('C = %4.2f'#13#10'',[
        S[2]]));
    Write(Format('TerminationType = %0d (should be 2 - stopping when step is small enough)'#13#10'',[
        Rep.TerminationType]));
end.

mlpbase unit

Subroutines

mlpavgce
mlpavgerror
mlpavgrelerror
mlpclserror
mlpcopy
mlpcreate0
mlpcreate1
mlpcreate2
mlpcreateb0
mlpcreateb1
mlpcreateb2
mlpcreatec0
mlpcreatec1
mlpcreatec2
mlpcreater0
mlpcreater1
mlpcreater2
mlperror
mlperrorn
mlpgrad
mlpgradbatch
mlpgradn
mlpgradnbatch
mlphessianbatch
mlphessiannbatch
mlpinitpreprocessor
mlpinternalprocessvector
mlpissoftmax
mlpprocess
mlpproperties
mlprandomize
mlprandomizefull
mlprelclserror
mlprmserror
mlpserialize
mlpunserialize

Examples

mlp_process
mlp_process_cls
mlp_randomize
mlp_serialize

mlpavgce subroutine

(************************************************************************* Average cross-entropy (in bits per element) on the test set INPUT PARAMETERS: Network - neural network XY - test set NPoints - test set size RESULT: CrossEntropy/(NPoints*LN(2)). Zero if network solves regression task. -- ALGLIB -- Copyright 08.01.2009 by Bochkanov Sergey *************************************************************************)
function MLPAvgCE(var Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpavgerror subroutine

(************************************************************************* Average error on the test set INPUT PARAMETERS: Network - neural network XY - test set NPoints - test set size RESULT: Its meaning for regression task is obvious. As for classification task, it means average error when estimating posterior probabilities. -- ALGLIB -- Copyright 11.03.2008 by Bochkanov Sergey *************************************************************************)
function MLPAvgError(var Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpavgrelerror subroutine

(************************************************************************* Average relative error on the test set INPUT PARAMETERS: Network - neural network XY - test set NPoints - test set size RESULT: Its meaning for regression task is obvious. As for classification task, it means average relative error when estimating posterior probability of belonging to the correct class. -- ALGLIB -- Copyright 11.03.2008 by Bochkanov Sergey *************************************************************************)
function MLPAvgRelError(var Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpclserror subroutine

(************************************************************************* Classification error -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
function MLPClsError(var Network : MultiLayerPerceptron; const XY : TReal2DArray; SSize : AlglibInteger):AlglibInteger;

mlpcopy subroutine

(************************************************************************* Copying of neural network INPUT PARAMETERS: Network1 - original OUTPUT PARAMETERS: Network2 - copy -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPCopy(const Network1 : MultiLayerPerceptron; var Network2 : MultiLayerPerceptron);

mlpcreate0 subroutine

(************************************************************************* Creates neural network with NIn inputs, NOut outputs, without hidden layers, with linear output layer. Network weights are filled with small random values. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPCreate0(NIn : AlglibInteger; NOut : AlglibInteger; var Network : MultiLayerPerceptron);

mlpcreate1 subroutine

(************************************************************************* Same as MLPCreate0, but with one hidden layer (NHid neurons) with non-linear activation function. Output layer is linear. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPCreate1(NIn : AlglibInteger; NHid : AlglibInteger; NOut : AlglibInteger; var Network : MultiLayerPerceptron);

mlpcreate2 subroutine

(************************************************************************* Same as MLPCreate0, but with two hidden layers (NHid1 and NHid2 neurons) with non-linear activation function. Output layer is linear. $ALL -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPCreate2(NIn : AlglibInteger; NHid1 : AlglibInteger; NHid2 : AlglibInteger; NOut : AlglibInteger; var Network : MultiLayerPerceptron);

mlpcreateb0 subroutine

(************************************************************************* Creates neural network with NIn inputs, NOut outputs, without hidden layers with non-linear output layer. Network weights are filled with small random values. Activation function of the output layer takes values: (B, +INF), if D>=0 or (-INF, B), if D<0. -- ALGLIB -- Copyright 30.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateB0(NIn : AlglibInteger; NOut : AlglibInteger; B : Double; D : Double; var Network : MultiLayerPerceptron);

mlpcreateb1 subroutine

(************************************************************************* Same as MLPCreateB0 but with non-linear hidden layer. -- ALGLIB -- Copyright 30.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateB1(NIn : AlglibInteger; NHid : AlglibInteger; NOut : AlglibInteger; B : Double; D : Double; var Network : MultiLayerPerceptron);

mlpcreateb2 subroutine

(************************************************************************* Same as MLPCreateB0 but with two non-linear hidden layers. -- ALGLIB -- Copyright 30.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateB2(NIn : AlglibInteger; NHid1 : AlglibInteger; NHid2 : AlglibInteger; NOut : AlglibInteger; B : Double; D : Double; var Network : MultiLayerPerceptron);

mlpcreatec0 subroutine

(************************************************************************* Creates classifier network with NIn inputs and NOut possible classes. Network contains no hidden layers and linear output layer with SOFTMAX- normalization (so outputs sums up to 1.0 and converge to posterior probabilities). -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateC0(NIn : AlglibInteger; NOut : AlglibInteger; var Network : MultiLayerPerceptron);

mlpcreatec1 subroutine

(************************************************************************* Same as MLPCreateC0, but with one non-linear hidden layer. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateC1(NIn : AlglibInteger; NHid : AlglibInteger; NOut : AlglibInteger; var Network : MultiLayerPerceptron);

mlpcreatec2 subroutine

(************************************************************************* Same as MLPCreateC0, but with two non-linear hidden layers. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateC2(NIn : AlglibInteger; NHid1 : AlglibInteger; NHid2 : AlglibInteger; NOut : AlglibInteger; var Network : MultiLayerPerceptron);

mlpcreater0 subroutine

(************************************************************************* Creates neural network with NIn inputs, NOut outputs, without hidden layers with non-linear output layer. Network weights are filled with small random values. Activation function of the output layer takes values [A,B]. -- ALGLIB -- Copyright 30.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateR0(NIn : AlglibInteger; NOut : AlglibInteger; A : Double; B : Double; var Network : MultiLayerPerceptron);

mlpcreater1 subroutine

(************************************************************************* Same as MLPCreateR0, but with non-linear hidden layer. -- ALGLIB -- Copyright 30.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateR1(NIn : AlglibInteger; NHid : AlglibInteger; NOut : AlglibInteger; A : Double; B : Double; var Network : MultiLayerPerceptron);

mlpcreater2 subroutine

(************************************************************************* Same as MLPCreateR0, but with two non-linear hidden layers. -- ALGLIB -- Copyright 30.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPCreateR2(NIn : AlglibInteger; NHid1 : AlglibInteger; NHid2 : AlglibInteger; NOut : AlglibInteger; A : Double; B : Double; var Network : MultiLayerPerceptron);

mlperror subroutine

(************************************************************************* Error function for neural network, internal subroutine. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
function MLPError(var Network : MultiLayerPerceptron; const XY : TReal2DArray; SSize : AlglibInteger):Double;

mlperrorn subroutine

(************************************************************************* Natural error function for neural network, internal subroutine. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
function MLPErrorN(var Network : MultiLayerPerceptron; const XY : TReal2DArray; SSize : AlglibInteger):Double;

mlpgrad subroutine

(************************************************************************* Gradient calculation. Internal subroutine. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPGrad(var Network : MultiLayerPerceptron; const X : TReal1DArray; const DesiredY : TReal1DArray; var E : Double; var Grad : TReal1DArray);

mlpgradbatch subroutine

(************************************************************************* Batch gradient calculation. Internal subroutine. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPGradBatch(var Network : MultiLayerPerceptron; const XY : TReal2DArray; SSize : AlglibInteger; var E : Double; var Grad : TReal1DArray);

mlpgradn subroutine

(************************************************************************* Gradient calculation (natural error function). Internal subroutine. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPGradN(var Network : MultiLayerPerceptron; const X : TReal1DArray; const DesiredY : TReal1DArray; var E : Double; var Grad : TReal1DArray);

mlpgradnbatch subroutine

(************************************************************************* Batch gradient calculation (natural error function). Internal subroutine. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPGradNBatch(var Network : MultiLayerPerceptron; const XY : TReal2DArray; SSize : AlglibInteger; var E : Double; var Grad : TReal1DArray);

mlphessianbatch subroutine

(************************************************************************* Batch Hessian calculation using R-algorithm. Internal subroutine. -- ALGLIB -- Copyright 26.01.2008 by Bochkanov Sergey. Hessian calculation based on R-algorithm described in "Fast Exact Multiplication by the Hessian", B. A. Pearlmutter, Neural Computation, 1994. *************************************************************************)
procedure MLPHessianBatch(var Network : MultiLayerPerceptron; const XY : TReal2DArray; SSize : AlglibInteger; var E : Double; var Grad : TReal1DArray; var H : TReal2DArray);

mlphessiannbatch subroutine

(************************************************************************* Batch Hessian calculation (natural error function) using R-algorithm. Internal subroutine. -- ALGLIB -- Copyright 26.01.2008 by Bochkanov Sergey. Hessian calculation based on R-algorithm described in "Fast Exact Multiplication by the Hessian", B. A. Pearlmutter, Neural Computation, 1994. *************************************************************************)
procedure MLPHessianNBatch(var Network : MultiLayerPerceptron; const XY : TReal2DArray; SSize : AlglibInteger; var E : Double; var Grad : TReal1DArray; var H : TReal2DArray);

mlpinitpreprocessor subroutine

(************************************************************************* Internal subroutine. -- ALGLIB -- Copyright 30.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPInitPreprocessor(var Network : MultiLayerPerceptron; const XY : TReal2DArray; SSize : AlglibInteger);

mlpinternalprocessvector subroutine

(************************************************************************* Internal subroutine, shouldn't be called by user. *************************************************************************)
procedure MLPInternalProcessVector(const StructInfo : TInteger1DArray; const Weights : TReal1DArray; const ColumnMeans : TReal1DArray; const ColumnSigmas : TReal1DArray; var Neurons : TReal1DArray; var DFDNET : TReal1DArray; const X : TReal1DArray; var Y : TReal1DArray);

mlpissoftmax subroutine

(************************************************************************* Tells whether network is SOFTMAX-normalized (i.e. classifier) or not. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
function MLPIsSoftmax(const Network : MultiLayerPerceptron):Boolean;

mlpprocess subroutine

(************************************************************************* Procesing INPUT PARAMETERS: Network - neural network X - input vector, array[0..NIn-1]. OUTPUT PARAMETERS: Y - result. Regression estimate when solving regression task, vector of posterior probabilities for classification task. Subroutine does not allocate memory for this vector, it is responsibility of a caller to allocate it. Array must be at least [0..NOut-1]. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPProcess(var Network : MultiLayerPerceptron; const X : TReal1DArray; var Y : TReal1DArray);

Examples:   mlp_process  mlp_process_cls  

mlpproperties subroutine

(************************************************************************* Returns information about initialized network: number of inputs, outputs, weights. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPProperties(const Network : MultiLayerPerceptron; var NIn : AlglibInteger; var NOut : AlglibInteger; var WCount : AlglibInteger);

mlprandomize subroutine

(************************************************************************* Randomization of neural network weights -- ALGLIB -- Copyright 06.11.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPRandomize(var Network : MultiLayerPerceptron);

Examples:   mlp_randomize  

mlprandomizefull subroutine

(************************************************************************* Randomization of neural network weights and standartisator -- ALGLIB -- Copyright 10.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPRandomizeFull(var Network : MultiLayerPerceptron);

mlprelclserror subroutine

(************************************************************************* Relative classification error on the test set INPUT PARAMETERS: Network - network XY - test set NPoints - test set size RESULT: percent of incorrectly classified cases. Works both for classifier networks and general purpose networks used as classifiers. -- ALGLIB -- Copyright 25.12.2008 by Bochkanov Sergey *************************************************************************)
function MLPRelClsError(var Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlprmserror subroutine

(************************************************************************* RMS error on the test set INPUT PARAMETERS: Network - neural network XY - test set NPoints - test set size RESULT: root mean square error. Its meaning for regression task is obvious. As for classification task, RMS error means error when estimating posterior probabilities. -- ALGLIB -- Copyright 04.11.2007 by Bochkanov Sergey *************************************************************************)
function MLPRMSError(var Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpserialize subroutine

(************************************************************************* Serialization of MultiLayerPerceptron strucure INPUT PARAMETERS: Network - original OUTPUT PARAMETERS: RA - array of real numbers which stores network, array[0..RLen-1] RLen - RA lenght -- ALGLIB -- Copyright 29.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPSerialize(const Network : MultiLayerPerceptron; var RA : TReal1DArray; var RLen : AlglibInteger);

Examples:   mlp_serialize  

mlpunserialize subroutine

(************************************************************************* Unserialization of MultiLayerPerceptron strucure INPUT PARAMETERS: RA - real array which stores network OUTPUT PARAMETERS: Network - restored network -- ALGLIB -- Copyright 29.03.2008 by Bochkanov Sergey *************************************************************************)
procedure MLPUnserialize(const RA : TReal1DArray; var Network : MultiLayerPerceptron);

Examples:   mlp_serialize  

mlp_process example

var
    Net : MultiLayerPerceptron;
    X : TReal1DArray;
    Y : TReal1DArray;
begin
    
    //
    // regression task with 2 inputs (independent variables)
    // and 2 outputs (dependent variables).
    //
    // network weights are initialized with small random values.
    //
    MLPCreate0(2, 2, Net);
    SetLength(X, 2);
    SetLength(Y, 2);
    X[0] := RandomReal-Double(0.5);
    X[1] := RandomReal-Double(0.5);
    MLPProcess(Net, X, Y);
    Write(Format('Regression task'#13#10'',[]));
    Write(Format('IN[0]  = %5.2f'#13#10'',[
        X[0]]));
    Write(Format('IN[1]  = %5.2f'#13#10'',[
        X[1]]));
    Write(Format('OUT[0] = %5.2f'#13#10'',[
        Y[0]]));
    Write(Format('OUT[1] = %5.2f'#13#10'',[
        Y[1]]));
end.

mlp_process_cls example

var
    Net : MultiLayerPerceptron;
    X : TReal1DArray;
    Y : TReal1DArray;
begin
    
    //
    // classification task with 2 inputs and 3 classes.
    //
    // network weights are initialized with small random values.
    //
    MLPCreateC0(2, 3, Net);
    SetLength(X, 2);
    SetLength(Y, 3);
    X[0] := RandomReal-Double(0.5);
    X[1] := RandomReal-Double(0.5);
    MLPProcess(Net, X, Y);
    
    //
    // output results
    //
    Write(Format('Classification task'#13#10'',[]));
    Write(Format('IN[0]  = %5.2f'#13#10'',[
        X[0]]));
    Write(Format('IN[1]  = %5.2f'#13#10'',[
        X[1]]));
    Write(Format('Prob(Class=0|IN) = %5.2f'#13#10'',[
        Y[0]]));
    Write(Format('Prob(Class=1|IN) = %5.2f'#13#10'',[
        Y[1]]));
    Write(Format('Prob(Class=2|IN) = %5.2f'#13#10'',[
        Y[2]]));
end.

mlp_randomize example

var
    Net : MultiLayerPerceptron;
begin
    MLPCreate0(2, 1, Net);
    MLPRandomize(Net);
end.

mlp_serialize example

var
    Network1 : MultiLayerPerceptron;
    Network2 : MultiLayerPerceptron;
    Network3 : MultiLayerPerceptron;
    X : TReal1DArray;
    Y : TReal1DArray;
    R : TReal1DArray;
    RLen : AlglibInteger;
    V1 : Double;
    V2 : Double;
begin
    
    //
    // Generate two networks filled with small random values.
    // Use MLPSerialize/MLPUnserialize to make network copy.
    //
    MLPCreate0(1, 1, Network1);
    MLPCreate0(1, 1, Network2);
    MLPSerialize(Network1, R, RLen);
    MLPUnserialize(R, Network2);
    
    //
    // Now Network1 and Network2 should be identical.
    // Let's demonstrate it.
    //
    Write(Format('Test serialization/unserialization'#13#10'',[]));
    SetLength(X, 1);
    SetLength(Y, 1);
    X[0] := 2*RandomReal-1;
    MLPProcess(Network1, X, Y);
    V1 := Y[0];
    Write(Format('Network1(X) = %0.2f'#13#10'',[
        Y[0]]));
    MLPProcess(Network2, X, Y);
    V2 := Y[0];
    Write(Format('Network2(X) = %0.2f'#13#10'',[
        Y[0]]));
    if AP_FP_Eq(V1,V2) then
    begin
        Write(Format('Results are equal, OK.'#13#10'',[]));
    end
    else
    begin
        Write(Format('Results are not equal... Strange...',[]));
    end;
end.

mlpe unit

Structures

mlpensemble

Subroutines

mlpeavgce
mlpeavgerror
mlpeavgrelerror
mlpebagginglbfgs
mlpebagginglm
mlpecopy
mlpecreate0
mlpecreate1
mlpecreate2
mlpecreateb0
mlpecreateb1
mlpecreateb2
mlpecreatec0
mlpecreatec1
mlpecreatec2
mlpecreatefromnetwork
mlpecreater0
mlpecreater1
mlpecreater2
mlpeissoftmax
mlpeprocess
mlpeproperties
mlperandomize
mlperelclserror
mlpermserror
mlpeserialize
mlpetraines
mlpeunserialize

mlpensemble structure

(************************************************************************* Neural networks ensemble *************************************************************************)
MLPEnsemble = record StructInfo : TInteger1DArray; EnsembleSize : AlglibInteger; NIn : AlglibInteger; NOut : AlglibInteger; WCount : AlglibInteger; IsSoftmax : Boolean; PostProcessing : Boolean; Weights : TReal1DArray; ColumnMeans : TReal1DArray; ColumnSigmas : TReal1DArray; SerializedLen : AlglibInteger; SerializedMLP : TReal1DArray; TmpWeights : TReal1DArray; TmpMeans : TReal1DArray; TmpSigmas : TReal1DArray; Neurons : TReal1DArray; DFDNET : TReal1DArray; Y : TReal1DArray; end;

mlpeavgce subroutine

(************************************************************************* Average cross-entropy (in bits per element) on the test set INPUT PARAMETERS: Ensemble- ensemble XY - test set NPoints - test set size RESULT: CrossEntropy/(NPoints*LN(2)). Zero if ensemble solves regression task. -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
function MLPEAvgCE(var Ensemble : MLPEnsemble; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpeavgerror subroutine

(************************************************************************* Average error on the test set INPUT PARAMETERS: Ensemble- ensemble XY - test set NPoints - test set size RESULT: Its meaning for regression task is obvious. As for classification task it means average error when estimating posterior probabilities. -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
function MLPEAvgError(var Ensemble : MLPEnsemble; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpeavgrelerror subroutine

(************************************************************************* Average relative error on the test set INPUT PARAMETERS: Ensemble- ensemble XY - test set NPoints - test set size RESULT: Its meaning for regression task is obvious. As for classification task it means average relative error when estimating posterior probabilities. -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
function MLPEAvgRelError(var Ensemble : MLPEnsemble; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpebagginglbfgs subroutine

(************************************************************************* Training neural networks ensemble using bootstrap aggregating (bagging). L-BFGS algorithm is used as base training method. INPUT PARAMETERS: Ensemble - model with initialized geometry XY - training set NPoints - training set size Decay - weight decay coefficient, >=0.001 Restarts - restarts, >0. WStep - stopping criterion, same as in MLPTrainLBFGS MaxIts - stopping criterion, same as in MLPTrainLBFGS OUTPUT PARAMETERS: Ensemble - trained model Info - return code: * -8, if both WStep=0 and MaxIts=0 * -2, if there is a point with class number outside of [0..NClasses-1]. * -1, if incorrect parameters was passed (NPoints<0, Restarts<1). * 2, if task has been solved. Rep - training report. OOBErrors - out-of-bag generalization error estimate -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPEBaggingLBFGS(var Ensemble : MLPEnsemble; const XY : TReal2DArray; NPoints : AlglibInteger; Decay : Double; Restarts : AlglibInteger; WStep : Double; MaxIts : AlglibInteger; var Info : AlglibInteger; var Rep : MLPReport; var OOBErrors : MLPCVReport);

mlpebagginglm subroutine

(************************************************************************* Training neural networks ensemble using bootstrap aggregating (bagging). Modified Levenberg-Marquardt algorithm is used as base training method. INPUT PARAMETERS: Ensemble - model with initialized geometry XY - training set NPoints - training set size Decay - weight decay coefficient, >=0.001 Restarts - restarts, >0. OUTPUT PARAMETERS: Ensemble - trained model Info - return code: * -2, if there is a point with class number outside of [0..NClasses-1]. * -1, if incorrect parameters was passed (NPoints<0, Restarts<1). * 2, if task has been solved. Rep - training report. OOBErrors - out-of-bag generalization error estimate -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPEBaggingLM(var Ensemble : MLPEnsemble; const XY : TReal2DArray; NPoints : AlglibInteger; Decay : Double; Restarts : AlglibInteger; var Info : AlglibInteger; var Rep : MLPReport; var OOBErrors : MLPCVReport);

mlpecopy subroutine

(************************************************************************* Copying of MLPEnsemble strucure INPUT PARAMETERS: Ensemble1 - original OUTPUT PARAMETERS: Ensemble2 - copy -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECopy(const Ensemble1 : MLPEnsemble; var Ensemble2 : MLPEnsemble);

mlpecreate0 subroutine

(************************************************************************* Like MLPCreate0, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreate0(NIn : AlglibInteger; NOut : AlglibInteger; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreate1 subroutine

(************************************************************************* Like MLPCreate1, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreate1(NIn : AlglibInteger; NHid : AlglibInteger; NOut : AlglibInteger; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreate2 subroutine

(************************************************************************* Like MLPCreate2, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreate2(NIn : AlglibInteger; NHid1 : AlglibInteger; NHid2 : AlglibInteger; NOut : AlglibInteger; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreateb0 subroutine

(************************************************************************* Like MLPCreateB0, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateB0(NIn : AlglibInteger; NOut : AlglibInteger; B : Double; D : Double; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreateb1 subroutine

(************************************************************************* Like MLPCreateB1, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateB1(NIn : AlglibInteger; NHid : AlglibInteger; NOut : AlglibInteger; B : Double; D : Double; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreateb2 subroutine

(************************************************************************* Like MLPCreateB2, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateB2(NIn : AlglibInteger; NHid1 : AlglibInteger; NHid2 : AlglibInteger; NOut : AlglibInteger; B : Double; D : Double; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreatec0 subroutine

(************************************************************************* Like MLPCreateC0, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateC0(NIn : AlglibInteger; NOut : AlglibInteger; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreatec1 subroutine

(************************************************************************* Like MLPCreateC1, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateC1(NIn : AlglibInteger; NHid : AlglibInteger; NOut : AlglibInteger; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreatec2 subroutine

(************************************************************************* Like MLPCreateC2, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateC2(NIn : AlglibInteger; NHid1 : AlglibInteger; NHid2 : AlglibInteger; NOut : AlglibInteger; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreatefromnetwork subroutine

(************************************************************************* Creates ensemble from network. Only network geometry is copied. -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateFromNetwork(const Network : MultiLayerPerceptron; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreater0 subroutine

(************************************************************************* Like MLPCreateR0, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateR0(NIn : AlglibInteger; NOut : AlglibInteger; A : Double; B : Double; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreater1 subroutine

(************************************************************************* Like MLPCreateR1, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateR1(NIn : AlglibInteger; NHid : AlglibInteger; NOut : AlglibInteger; A : Double; B : Double; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpecreater2 subroutine

(************************************************************************* Like MLPCreateR2, but for ensembles. -- ALGLIB -- Copyright 18.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPECreateR2(NIn : AlglibInteger; NHid1 : AlglibInteger; NHid2 : AlglibInteger; NOut : AlglibInteger; A : Double; B : Double; EnsembleSize : AlglibInteger; var Ensemble : MLPEnsemble);

mlpeissoftmax subroutine

(************************************************************************* Return normalization type (whether ensemble is SOFTMAX-normalized or not). -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
function MLPEIsSoftmax(const Ensemble : MLPEnsemble):Boolean;

mlpeprocess subroutine

(************************************************************************* Procesing INPUT PARAMETERS: Ensemble- neural networks ensemble X - input vector, array[0..NIn-1]. OUTPUT PARAMETERS: Y - result. Regression estimate when solving regression task, vector of posterior probabilities for classification task. Subroutine does not allocate memory for this vector, it is responsibility of a caller to allocate it. Array must be at least [0..NOut-1]. -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPEProcess(var Ensemble : MLPEnsemble; const X : TReal1DArray; var Y : TReal1DArray);

mlpeproperties subroutine

(************************************************************************* Return ensemble properties (number of inputs and outputs). -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPEProperties(const Ensemble : MLPEnsemble; var NIn : AlglibInteger; var NOut : AlglibInteger);

mlperandomize subroutine

(************************************************************************* Randomization of MLP ensemble -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPERandomize(var Ensemble : MLPEnsemble);

mlperelclserror subroutine

(************************************************************************* Relative classification error on the test set INPUT PARAMETERS: Ensemble- ensemble XY - test set NPoints - test set size RESULT: percent of incorrectly classified cases. Works both for classifier betwork and for regression networks which are used as classifiers. -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
function MLPERelClsError(var Ensemble : MLPEnsemble; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpermserror subroutine

(************************************************************************* RMS error on the test set INPUT PARAMETERS: Ensemble- ensemble XY - test set NPoints - test set size RESULT: root mean square error. Its meaning for regression task is obvious. As for classification task RMS error means error when estimating posterior probabilities. -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
function MLPERMSError(var Ensemble : MLPEnsemble; const XY : TReal2DArray; NPoints : AlglibInteger):Double;

mlpeserialize subroutine

(************************************************************************* Serialization of MLPEnsemble strucure INPUT PARAMETERS: Ensemble- original OUTPUT PARAMETERS: RA - array of real numbers which stores ensemble, array[0..RLen-1] RLen - RA lenght -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPESerialize(var Ensemble : MLPEnsemble; var RA : TReal1DArray; var RLen : AlglibInteger);

mlpetraines subroutine

(************************************************************************* Training neural networks ensemble using early stopping. INPUT PARAMETERS: Ensemble - model with initialized geometry XY - training set NPoints - training set size Decay - weight decay coefficient, >=0.001 Restarts - restarts, >0. OUTPUT PARAMETERS: Ensemble - trained model Info - return code: * -2, if there is a point with class number outside of [0..NClasses-1]. * -1, if incorrect parameters was passed (NPoints<0, Restarts<1). * 6, if task has been solved. Rep - training report. OOBErrors - out-of-bag generalization error estimate -- ALGLIB -- Copyright 10.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPETrainES(var Ensemble : MLPEnsemble; const XY : TReal2DArray; NPoints : AlglibInteger; Decay : Double; Restarts : AlglibInteger; var Info : AlglibInteger; var Rep : MLPReport);

mlpeunserialize subroutine

(************************************************************************* Unserialization of MLPEnsemble strucure INPUT PARAMETERS: RA - real array which stores ensemble OUTPUT PARAMETERS: Ensemble- restored structure -- ALGLIB -- Copyright 17.02.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPEUnserialize(const RA : TReal1DArray; var Ensemble : MLPEnsemble);

mlptrain unit

Structures

mlpcvreport
mlpreport

Subroutines

mlpkfoldcvlbfgs
mlpkfoldcvlm
mlptraines
mlptrainlbfgs
mlptrainlm

mlpcvreport structure

(************************************************************************* Cross-validation estimates of generalization error *************************************************************************)
MLPCVReport = record RelCLSError : Double; AvgCE : Double; RMSError : Double; AvgError : Double; AvgRelError : Double; end;

mlpreport structure

(************************************************************************* Training report: * NGrad - number of gradient calculations * NHess - number of Hessian calculations * NCholesky - number of Cholesky decompositions *************************************************************************)
MLPReport = record NGrad : AlglibInteger; NHess : AlglibInteger; NCholesky : AlglibInteger; end;

mlpkfoldcvlbfgs subroutine

(************************************************************************* Cross-validation estimate of generalization error. Base algorithm - L-BFGS. INPUT PARAMETERS: Network - neural network with initialized geometry. Network is not changed during cross-validation - it is used only as a representative of its architecture. XY - training set. SSize - training set size Decay - weight decay, same as in MLPTrainLBFGS Restarts - number of restarts, >0. restarts are counted for each partition separately, so total number of restarts will be Restarts*FoldsCount. WStep - stopping criterion, same as in MLPTrainLBFGS MaxIts - stopping criterion, same as in MLPTrainLBFGS FoldsCount - number of folds in k-fold cross-validation, 2<=FoldsCount<=SSize. recommended value: 10. OUTPUT PARAMETERS: Info - return code, same as in MLPTrainLBFGS Rep - report, same as in MLPTrainLM/MLPTrainLBFGS CVRep - generalization error estimates -- ALGLIB -- Copyright 09.12.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPKFoldCVLBFGS(const Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger; Decay : Double; Restarts : AlglibInteger; WStep : Double; MaxIts : AlglibInteger; FoldsCount : AlglibInteger; var Info : AlglibInteger; var Rep : MLPReport; var CVRep : MLPCVReport);

mlpkfoldcvlm subroutine

(************************************************************************* Cross-validation estimate of generalization error. Base algorithm - Levenberg-Marquardt. INPUT PARAMETERS: Network - neural network with initialized geometry. Network is not changed during cross-validation - it is used only as a representative of its architecture. XY - training set. SSize - training set size Decay - weight decay, same as in MLPTrainLBFGS Restarts - number of restarts, >0. restarts are counted for each partition separately, so total number of restarts will be Restarts*FoldsCount. FoldsCount - number of folds in k-fold cross-validation, 2<=FoldsCount<=SSize. recommended value: 10. OUTPUT PARAMETERS: Info - return code, same as in MLPTrainLBFGS Rep - report, same as in MLPTrainLM/MLPTrainLBFGS CVRep - generalization error estimates -- ALGLIB -- Copyright 09.12.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPKFoldCVLM(const Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger; Decay : Double; Restarts : AlglibInteger; FoldsCount : AlglibInteger; var Info : AlglibInteger; var Rep : MLPReport; var CVRep : MLPCVReport);

mlptraines subroutine

(************************************************************************* Neural network training using early stopping (base algorithm - L-BFGS with regularization). INPUT PARAMETERS: Network - neural network with initialized geometry TrnXY - training set TrnSize - training set size ValXY - validation set ValSize - validation set size Decay - weight decay constant, >=0.001 Decay term 'Decay*||Weights||^2' is added to error function. If you don't know what Decay to choose, use 0.001. Restarts - number of restarts from random position, >0. If you don't know what Restarts to choose, use 2. OUTPUT PARAMETERS: Network - trained neural network. Info - return code: * -2, if there is a point with class number outside of [0..NOut-1]. * -1, if wrong parameters specified (NPoints<0, Restarts<1, ...). * 2, task has been solved, stopping criterion met - sufficiently small step size. Not expected (we use EARLY stopping) but possible and not an error. * 6, task has been solved, stopping criterion met - increasing of validation set error. Rep - training report NOTE: Algorithm stops if validation set error increases for a long enough or step size is small enought (there are task where validation set may decrease for eternity). In any case solution returned corresponds to the minimum of validation set error. -- ALGLIB -- Copyright 10.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPTrainES(var Network : MultiLayerPerceptron; const TrnXY : TReal2DArray; TrnSize : AlglibInteger; const ValXY : TReal2DArray; ValSize : AlglibInteger; Decay : Double; Restarts : AlglibInteger; var Info : AlglibInteger; var Rep : MLPReport);

mlptrainlbfgs subroutine

(************************************************************************* Neural network training using L-BFGS algorithm with regularization. Subroutine trains neural network with restarts from random positions. Algorithm is well suited for problems of any dimensionality (memory requirements and step complexity are linear by weights number). INPUT PARAMETERS: Network - neural network with initialized geometry XY - training set NPoints - training set size Decay - weight decay constant, >=0.001 Decay term 'Decay*||Weights||^2' is added to error function. If you don't know what Decay to choose, use 0.001. Restarts - number of restarts from random position, >0. If you don't know what Restarts to choose, use 2. WStep - stopping criterion. Algorithm stops if step size is less than WStep. Recommended value - 0.01. Zero step size means stopping after MaxIts iterations. MaxIts - stopping criterion. Algorithm stops after MaxIts iterations (NOT gradient calculations). Zero MaxIts means stopping when step is sufficiently small. OUTPUT PARAMETERS: Network - trained neural network. Info - return code: * -8, if both WStep=0 and MaxIts=0 * -2, if there is a point with class number outside of [0..NOut-1]. * -1, if wrong parameters specified (NPoints<0, Restarts<1). * 2, if task has been solved. Rep - training report -- ALGLIB -- Copyright 09.12.2007 by Bochkanov Sergey *************************************************************************)
procedure MLPTrainLBFGS(var Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger; Decay : Double; Restarts : AlglibInteger; WStep : Double; MaxIts : AlglibInteger; var Info : AlglibInteger; var Rep : MLPReport);

mlptrainlm subroutine

(************************************************************************* Neural network training using modified Levenberg-Marquardt with exact Hessian calculation and regularization. Subroutine trains neural network with restarts from random positions. Algorithm is well suited for small and medium scale problems (hundreds of weights). INPUT PARAMETERS: Network - neural network with initialized geometry XY - training set NPoints - training set size Decay - weight decay constant, >=0.001 Decay term 'Decay*||Weights||^2' is added to error function. If you don't know what Decay to choose, use 0.001. Restarts - number of restarts from random position, >0. If you don't know what Restarts to choose, use 2. OUTPUT PARAMETERS: Network - trained neural network. Info - return code: * -9, if internal matrix inverse subroutine failed * -2, if there is a point with class number outside of [0..NOut-1]. * -1, if wrong parameters specified (NPoints<0, Restarts<1). * 2, if task has been solved. Rep - training report -- ALGLIB -- Copyright 10.03.2009 by Bochkanov Sergey *************************************************************************)
procedure MLPTrainLM(var Network : MultiLayerPerceptron; const XY : TReal2DArray; NPoints : AlglibInteger; Decay : Double; Restarts : AlglibInteger; var Info : AlglibInteger; var Rep : MLPReport);

nearestneighbor unit

Subroutines

kdtreebuild
kdtreebuildtagged
kdtreequeryaknn
kdtreequeryknn
kdtreequeryresultsdistances
kdtreequeryresultstags
kdtreequeryresultsx
kdtreequeryresultsxy
kdtreequeryrnn

kdtreebuild subroutine

(************************************************************************* KD-tree creation This subroutine creates KD-tree from set of X-values and optional Y-values INPUT PARAMETERS XY - dataset, array[0..N-1,0..NX+NY-1]. one row corresponds to one point. first NX columns contain X-values, next NY (NY may be zero) columns may contain associated Y-values N - number of points, N>=1 NX - space dimension, NX>=1. NY - number of optional Y-values, NY>=0. NormType- norm type: * 0 denotes infinity-norm * 1 denotes 1-norm * 2 denotes 2-norm (Euclidean norm) OUTPUT PARAMETERS KDT - KD-tree NOTES 1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory requirements. 2. Although KD-trees may be used with any combination of N and NX, they are more efficient than brute-force search only when N >> 4^NX. So they are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another inefficient case, because simple binary search (without additional structures) is much more efficient in such tasks than KD-trees. -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
procedure KDTreeBuild(const XY : TReal2DArray; N : AlglibInteger; NX : AlglibInteger; NY : AlglibInteger; NormType : AlglibInteger; var KDT : KDTree);

kdtreebuildtagged subroutine

(************************************************************************* KD-tree creation This subroutine creates KD-tree from set of X-values, integer tags and optional Y-values INPUT PARAMETERS XY - dataset, array[0..N-1,0..NX+NY-1]. one row corresponds to one point. first NX columns contain X-values, next NY (NY may be zero) columns may contain associated Y-values Tags - tags, array[0..N-1], contains integer tags associated with points. N - number of points, N>=1 NX - space dimension, NX>=1. NY - number of optional Y-values, NY>=0. NormType- norm type: * 0 denotes infinity-norm * 1 denotes 1-norm * 2 denotes 2-norm (Euclidean norm) OUTPUT PARAMETERS KDT - KD-tree NOTES 1. KD-tree creation have O(N*logN) complexity and O(N*(2*NX+NY)) memory requirements. 2. Although KD-trees may be used with any combination of N and NX, they are more efficient than brute-force search only when N >> 4^NX. So they are most useful in low-dimensional tasks (NX=2, NX=3). NX=1 is another inefficient case, because simple binary search (without additional structures) is much more efficient in such tasks than KD-trees. -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
procedure KDTreeBuildTagged(const XY : TReal2DArray; const Tags : TInteger1DArray; N : AlglibInteger; NX : AlglibInteger; NY : AlglibInteger; NormType : AlglibInteger; var KDT : KDTree);

kdtreequeryaknn subroutine

(************************************************************************* K-NN query: approximate K nearest neighbors INPUT PARAMETERS KDT - KD-tree X - point, array[0..NX-1]. K - number of neighbors to return, K>=1 SelfMatch - whether self-matches are allowed: * if True, nearest neighbor may be the point itself (if it exists in original dataset) * if False, then only points with non-zero distance are returned Eps - approximation factor, Eps>=0. eps-approximate nearest neighbor is a neighbor whose distance from X is at most (1+eps) times distance of true nearest neighbor. RESULT number of actual neighbors found (either K or N, if K>N). NOTES significant performance gain may be achieved only when Eps is is on the order of magnitude of 1 or larger. This subroutine performs query and stores its result in the internal structures of the KD-tree. You can use following subroutines to obtain these results: * KDTreeQueryResultsX() to get X-values * KDTreeQueryResultsXY() to get X- and Y-values * KDTreeQueryResultsTags() to get tag values * KDTreeQueryResultsDistances() to get distances -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
function KDTreeQueryAKNN(var KDT : KDTree; const X : TReal1DArray; K : AlglibInteger; SelfMatch : Boolean; Eps : Double):AlglibInteger;

kdtreequeryknn subroutine

(************************************************************************* K-NN query: K nearest neighbors INPUT PARAMETERS KDT - KD-tree X - point, array[0..NX-1]. K - number of neighbors to return, K>=1 SelfMatch - whether self-matches are allowed: * if True, nearest neighbor may be the point itself (if it exists in original dataset) * if False, then only points with non-zero distance are returned RESULT number of actual neighbors found (either K or N, if K>N). This subroutine performs query and stores its result in the internal structures of the KD-tree. You can use following subroutines to obtain these results: * KDTreeQueryResultsX() to get X-values * KDTreeQueryResultsXY() to get X- and Y-values * KDTreeQueryResultsTags() to get tag values * KDTreeQueryResultsDistances() to get distances -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
function KDTreeQueryKNN(var KDT : KDTree; const X : TReal1DArray; K : AlglibInteger; SelfMatch : Boolean):AlglibInteger;

kdtreequeryresultsdistances subroutine

(************************************************************************* Distances from last query INPUT PARAMETERS KDT - KD-tree R - pre-allocated array, at least K elements OUTPUT PARAMETERS R - first K elements are filled with distances (in corresponding norm) K - number of points NOTE points are ordered by distance from the query point (first = closest) SEE ALSO * KDTreeQueryResultsX() X-values * KDTreeQueryResultsXY() X- and Y-values * KDTreeQueryResultsTags() tag values -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
procedure KDTreeQueryResultsDistances(const KDT : KDTree; var R : TReal1DArray; var K : AlglibInteger);

kdtreequeryresultstags subroutine

(************************************************************************* point tags from last query INPUT PARAMETERS KDT - KD-tree Tags - pre-allocated array, at least K elements OUTPUT PARAMETERS Tags - first K elements are filled with tags associated with points, or, when no tags were supplied, with zeros K - number of points NOTE points are ordered by distance from the query point (first = closest) SEE ALSO * KDTreeQueryResultsX() X-values * KDTreeQueryResultsXY() X- and Y-values * KDTreeQueryResultsDistances() distances -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
procedure KDTreeQueryResultsTags(const KDT : KDTree; var Tags : TInteger1DArray; var K : AlglibInteger);

kdtreequeryresultsx subroutine

(************************************************************************* X-values from last query INPUT PARAMETERS KDT - KD-tree X - pre-allocated array, at least K rows, at least NX columns OUTPUT PARAMETERS X - K rows are filled with X-values K - number of points NOTE points are ordered by distance from the query point (first = closest) SEE ALSO * KDTreeQueryResultsXY() X- and Y-values * KDTreeQueryResultsTags() tag values * KDTreeQueryResultsDistances() distances -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
procedure KDTreeQueryResultsX(const KDT : KDTree; var X : TReal2DArray; var K : AlglibInteger);

kdtreequeryresultsxy subroutine

(************************************************************************* X- and Y-values from last query INPUT PARAMETERS KDT - KD-tree XY - pre-allocated array, at least K rows, at least NX+NY columns OUTPUT PARAMETERS X - K rows are filled with points: first NX columns with X-values, next NY columns - with Y-values. K - number of points NOTE points are ordered by distance from the query point (first = closest) SEE ALSO * KDTreeQueryResultsX() X-values * KDTreeQueryResultsTags() tag values * KDTreeQueryResultsDistances() distances -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
procedure KDTreeQueryResultsXY(const KDT : KDTree; var XY : TReal2DArray; var K : AlglibInteger);

kdtreequeryrnn subroutine

(************************************************************************* R-NN query: all points within R-sphere centered at X INPUT PARAMETERS KDT - KD-tree X - point, array[0..NX-1]. R - radius of sphere (in corresponding norm), R>0 SelfMatch - whether self-matches are allowed: * if True, nearest neighbor may be the point itself (if it exists in original dataset) * if False, then only points with non-zero distance are returned RESULT number of neighbors found, >=0 This subroutine performs query and stores its result in the internal structures of the KD-tree. You can use following subroutines to obtain actual results: * KDTreeQueryResultsX() to get X-values * KDTreeQueryResultsXY() to get X- and Y-values * KDTreeQueryResultsTags() to get tag values * KDTreeQueryResultsDistances() to get distances -- ALGLIB -- Copyright 28.02.2010 by Bochkanov Sergey *************************************************************************)
function KDTreeQueryRNN(var KDT : KDTree; const X : TReal1DArray; R : Double; SelfMatch : Boolean):AlglibInteger;

normaldistr unit

Subroutines

erf
erfc
inverf
invnormaldistribution
normaldistribution

erf subroutine

(************************************************************************* Error function The integral is x - 2 | | 2 erf(x) = -------- | exp( - t ) dt. sqrt(pi) | | - 0 For 0 <= |x| < 1, erf(x) = x * P4(x**2)/Q5(x**2); otherwise erf(x) = 1 - erfc(x). ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,1 30000 3.7e-16 1.0e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier *************************************************************************)
function Erf(X : Double):Double;

erfc subroutine

(************************************************************************* Complementary error function 1 - erf(x) = inf. - 2 | | 2 erfc(x) = -------- | exp( - t ) dt sqrt(pi) | | - x For small x, erfc(x) = 1 - erf(x); otherwise rational approximations are computed. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0,26.6417 30000 5.7e-14 1.5e-14 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier *************************************************************************)
function ErfC(X : Double):Double;

inverf subroutine

(************************************************************************* Inverse of the error function Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier *************************************************************************)
function InvErf(E : Double):Double;

invnormaldistribution subroutine

(************************************************************************* Inverse of Normal distribution function Returns the argument, x, for which the area under the Gaussian probability density function (integrated from minus infinity to x) is equal to y. For small arguments 0 < y < exp(-2), the program computes z = sqrt( -2.0 * log(y) ); then the approximation is x = z - log(z)/z - (1/z) P(1/z) / Q(1/z). There are two rational functions P/Q, one for 0 < y < exp(-32) and the other for y up to exp(-2). For larger arguments, w = y - 0.5, and x/sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE 0.125, 1 20000 7.2e-16 1.3e-16 IEEE 3e-308, 0.135 50000 4.6e-16 9.8e-17 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier *************************************************************************)
function InvNormalDistribution(y0 : Double):Double;

normaldistribution subroutine

(************************************************************************* Normal distribution function Returns the area under the Gaussian probability density function, integrated from minus infinity to x: x - 1 | | 2 ndtr(x) = --------- | exp( - t /2 ) dt sqrt(2pi) | | - -inf. = ( 1 + erf(z) ) / 2 = erfc(z) / 2 where z = x/sqrt(2). Computation is via the functions erf and erfc. ACCURACY: Relative error: arithmetic domain # trials peak rms IEEE -13,0 30000 3.4e-14 6.7e-15 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1988, 1992, 2000 by Stephen L. Moshier *************************************************************************)
function NormalDistribution(X : Double):Double;

odesolver unit

Subroutines

odesolveriteration
odesolverresults
odesolverrkck

Examples

ode_example1
ode_example2

odesolveriteration subroutine

(************************************************************************* One iteration of ODE solver. Called after inialization of State structure with OdeSolverXXX subroutine. See HTML docs for examples. INPUT PARAMETERS: State - structure which stores algorithm state between subsequent calls and which is used for reverse communication. Must be initialized with OdeSolverXXX() call first. If subroutine returned False, algorithm have finished its work. If subroutine returned True, then user should: * calculate F(State.X, State.Y) * store it in State.DY Here State.X is real, State.Y and State.DY are arrays[0..N-1] of reals. -- ALGLIB -- Copyright 01.09.2009 by Bochkanov Sergey *************************************************************************)
function ODESolverIteration(var State : ODESolverState):Boolean;

Examples:   ode_example1  ode_example2  

odesolverresults subroutine

(************************************************************************* ODE solver results Called after OdeSolverIteration returned False. INPUT PARAMETERS: State - algorithm state (used by OdeSolverIteration). OUTPUT PARAMETERS: M - number of tabulated values, M>=1 XTbl - array[0..M-1], values of X YTbl - array[0..M-1,0..N-1], values of Y in X[i] Rep - solver report: * Rep.TerminationType completetion code: * -2 X is not ordered by ascending/descending or there are non-distinct X[], i.e. X[i]=X[i+1] * -1 incorrect parameters were specified * 1 task has been solved * Rep.NFEV contains number of function calculations -- ALGLIB -- Copyright 01.09.2009 by Bochkanov Sergey *************************************************************************)
procedure ODESolverResults(const State : ODESolverState; var M : AlglibInteger; var XTbl : TReal1DArray; var YTbl : TReal2DArray; var Rep : ODESolverReport);

Examples:   ode_example1  ode_example2  

odesolverrkck subroutine

(************************************************************************* Cash-Karp adaptive ODE solver. This subroutine solves ODE Y'=f(Y,x) with initial conditions Y(xs)=Ys (here Y may be single variable or vector of N variables). INPUT PARAMETERS: Y - initial conditions, array[0..N-1]. contains values of Y[] at X[0] N - system size X - points at which Y should be tabulated, array[0..M-1] integrations starts at X[0], ends at X[M-1], intermediate values at X[i] are returned too. SHOULD BE ORDERED BY ASCENDING OR BY DESCENDING!!!! M - number of intermediate points + first point + last point: * M>2 means that you need both Y(X[M-1]) and M-2 values at intermediate points * M=2 means that you want just to integrate from X[0] to X[1] and don't interested in intermediate values. * M=1 means that you don't want to integrate :) it is degenerate case, but it will be handled correctly. * M<1 means error Eps - tolerance (absolute/relative error on each step will be less than Eps). When passing: * Eps>0, it means desired ABSOLUTE error * Eps<0, it means desired RELATIVE error. Relative errors are calculated with respect to maximum values of Y seen so far. Be careful to use this criterion when starting from Y[] that are close to zero. H - initial step lenth, it will be adjusted automatically after the first step. If H=0, step will be selected automatically (usualy it will be equal to 0.001 of min(x[i]-x[j])). OUTPUT PARAMETERS State - structure which stores algorithm state between subsequent calls of OdeSolverIteration. Used for reverse communication. This structure should be passed to the OdeSolverIteration subroutine. SEE ALSO AutoGKSmoothW, AutoGKSingular, AutoGKIteration, AutoGKResults. -- ALGLIB -- Copyright 01.09.2009 by Bochkanov Sergey *************************************************************************)
procedure ODESolverRKCK(const Y : TReal1DArray; N : AlglibInteger; const X : TReal1DArray; M : AlglibInteger; Eps : Double; H : Double; var State : ODESolverState);

Examples:   ode_example1  ode_example2  

ode_example1 example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    YTbl : TReal2DArray;
    Eps : Double;
    H : Double;
    M : AlglibInteger;
    I : AlglibInteger;
    State : ODESolverState;
    Rep : ODESolverReport;
begin
    
    //
    // ODESolver unit is used to solve simple ODE:
    // y' = y, y(0) = 1.
    //
    // Its solution is well known in academic circles :)
    //
    // No intermediate values are calculated,
    // just starting and final points.
    //
    SetLength(Y, 1);
    Y[0] := 1;
    SetLength(X, 2);
    X[0] := 0;
    X[1] := 1;
    Eps := Double(1.0E-4);
    H := Double(0.01);
    ODESolverRKCK(Y, 1, X, 2, Eps, H, State);
    while ODESolverIteration(State) do
    begin
        State.DY[0] := State.Y[0];
    end;
    ODESolverResults(State, M, X, YTbl, Rep);
    Write(Format('    X  Y(X)'#13#10'',[]));
    I:=0;
    while I<=M-1 do
    begin
        Write(Format('%5.3f %5.3f'#13#10'',[
            X[I],
            YTbl[I,0]]));
        Inc(I);
    end;
end.

ode_example2 example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    YTbl : TReal2DArray;
    Eps : Double;
    H : Double;
    M : AlglibInteger;
    I : AlglibInteger;
    State : ODESolverState;
    Rep : ODESolverReport;
begin
    
    //
    // ODESolver unit is used to solve simple ODE:
    // y'' = -y, y(0) = 0, y'(0)=1.
    //
    // This ODE may be written as first-order system:
    // y' =  z
    // z' = -y
    //
    // Its solution is well known in academic circles :)
    //
    // Three intermediate values are calculated,
    // plus starting and final points.
    //
    SetLength(Y, 2);
    Y[0] := 0;
    Y[1] := 1;
    SetLength(X, 5);
    X[0] := Pi*0/4;
    X[1] := Pi*1/4;
    X[2] := Pi*2/4;
    X[3] := Pi*3/4;
    X[4] := Pi*4/4;
    Eps := Double(1.0E-8);
    H := Double(0.01);
    ODESolverRKCK(Y, 2, X, 5, Eps, H, State);
    while ODESolverIteration(State) do
    begin
        State.DY[0] := State.Y[1];
        State.DY[1] := -State.Y[0];
    end;
    ODESolverResults(State, M, X, YTbl, Rep);
    Write(Format('     X   Y(X)     Error'#13#10'',[]));
    I:=0;
    while I<=M-1 do
    begin
        Write(Format('%6.3f %6.3f  %8.2e'#13#10'',[
            X[I],
            YTbl[I,0],
            AbsReal(YTbl[I,0]-Sin(X[I]))]));
        Inc(I);
    end;
end.

ortfac unit

Subroutines

cmatrixlq
cmatrixlqunpackl
cmatrixlqunpackq
cmatrixqr
cmatrixqrunpackq
cmatrixqrunpackr
hmatrixtd
hmatrixtdunpackq
rmatrixbd
rmatrixbdmultiplybyp
rmatrixbdmultiplybyq
rmatrixbdunpackdiagonals
rmatrixbdunpackpt
rmatrixbdunpackq
rmatrixhessenberg
rmatrixhessenbergunpackh
rmatrixhessenbergunpackq
rmatrixlq
rmatrixlqunpackl
rmatrixlqunpackq
rmatrixqr
rmatrixqrunpackq
rmatrixqrunpackr
smatrixtd
smatrixtdunpackq

cmatrixlq subroutine

(************************************************************************* LQ decomposition of a rectangular complex matrix of size MxN Input parameters: A - matrix A whose indexes range within [0..M-1, 0..N-1] M - number of rows in matrix A. N - number of columns in matrix A. Output parameters: A - matrices Q and L in compact form Tau - array of scalar factors which are used to form matrix Q. Array whose indexes range within [0.. Min(M,N)-1] Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size MxM, L - lower triangular (or lower trapezoid) matrix of size MxN. -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 *************************************************************************)
procedure CMatrixLQ(var A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger; var Tau : TComplex1DArray);

cmatrixlqunpackl subroutine

(************************************************************************* Unpacking of matrix L from the LQ decomposition of a matrix A Input parameters: A - matrices Q and L in compact form. Output of CMatrixLQ subroutine. M - number of rows in given matrix A. M>=0. N - number of columns in given matrix A. N>=0. Output parameters: L - matrix L, array[0..M-1, 0..N-1]. -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure CMatrixLQUnpackL(const A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger; var L : TComplex2DArray);

cmatrixlqunpackq subroutine

(************************************************************************* Partial unpacking of matrix Q from LQ decomposition of a complex matrix A. Input parameters: A - matrices Q and R in compact form. Output of CMatrixLQ subroutine . M - number of rows in matrix A. M>=0. N - number of columns in matrix A. N>=0. Tau - scalar factors which are used to form Q. Output of CMatrixLQ subroutine . QRows - required number of rows in matrix Q. N>=QColumns>=0. Output parameters: Q - first QRows rows of matrix Q. Array whose index ranges within [0..QRows-1, 0..N-1]. If QRows=0, array isn't changed. -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure CMatrixLQUnpackQ(const A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger; const Tau : TComplex1DArray; QRows : AlglibInteger; var Q : TComplex2DArray);

cmatrixqr subroutine

(************************************************************************* QR decomposition of a rectangular complex matrix of size MxN Input parameters: A - matrix A whose indexes range within [0..M-1, 0..N-1] M - number of rows in matrix A. N - number of columns in matrix A. Output parameters: A - matrices Q and R in compact form Tau - array of scalar factors which are used to form matrix Q. Array whose indexes range within [0.. Min(M,N)-1] Matrix A is represented as A = QR, where Q is an orthogonal matrix of size MxM, R - upper triangular (or upper trapezoid) matrix of size MxN. -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994 *************************************************************************)
procedure CMatrixQR(var A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger; var Tau : TComplex1DArray);

cmatrixqrunpackq subroutine

(************************************************************************* Partial unpacking of matrix Q from QR decomposition of a complex matrix A. Input parameters: A - matrices Q and R in compact form. Output of CMatrixQR subroutine . M - number of rows in matrix A. M>=0. N - number of columns in matrix A. N>=0. Tau - scalar factors which are used to form Q. Output of CMatrixQR subroutine . QColumns - required number of columns in matrix Q. M>=QColumns>=0. Output parameters: Q - first QColumns columns of matrix Q. Array whose index ranges within [0..M-1, 0..QColumns-1]. If QColumns=0, array isn't changed. -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure CMatrixQRUnpackQ(const A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger; const Tau : TComplex1DArray; QColumns : AlglibInteger; var Q : TComplex2DArray);

cmatrixqrunpackr subroutine

(************************************************************************* Unpacking of matrix R from the QR decomposition of a matrix A Input parameters: A - matrices Q and R in compact form. Output of CMatrixQR subroutine. M - number of rows in given matrix A. M>=0. N - number of columns in given matrix A. N>=0. Output parameters: R - matrix R, array[0..M-1, 0..N-1]. -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure CMatrixQRUnpackR(const A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger; var R : TComplex2DArray);

hmatrixtd subroutine

(************************************************************************* Reduction of a Hermitian matrix which is given by its higher or lower triangular part to a real tridiagonal matrix using unitary similarity transformation: Q'*A*Q = T. Input parameters: A - matrix to be transformed array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - storage format. If IsUpper = True, then matrix A is given by its upper triangle, and the lower triangle is not used and not modified by the algorithm, and vice versa if IsUpper = False. Output parameters: A - matrices T and Q in compact form (see lower) Tau - array of factors which are forming matrices H(i) array with elements [0..N-2]. D - main diagonal of real symmetric matrix T. array with elements [0..N-1]. E - secondary diagonal of real symmetric matrix T. array with elements [0..N-2]. If IsUpper=True, the matrix Q is represented as a product of elementary reflectors Q = H(n-2) . . . H(2) H(0). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in A(0:i-1,i+1), and tau in TAU(i). If IsUpper=False, the matrix Q is represented as a product of elementary reflectors Q = H(0) H(2) . . . H(n-2). Each H(i) has the form H(i) = I - tau * v * v' where tau is a complex scalar, and v is a complex vector with v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = 'U': if UPLO = 'L': ( d e v1 v2 v3 ) ( d ) ( d e v2 v3 ) ( e d ) ( d e v3 ) ( v0 e d ) ( d e ) ( v0 v1 e d ) ( d ) ( v0 v1 v2 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1992 *************************************************************************)
procedure HMatrixTD(var A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; var Tau : TComplex1DArray; var D : TReal1DArray; var E : TReal1DArray);

hmatrixtdunpackq subroutine

(************************************************************************* Unpacking matrix Q which reduces a Hermitian matrix to a real tridiagonal form. Input parameters: A - the result of a HMatrixTD subroutine N - size of matrix A. IsUpper - storage format (a parameter of HMatrixTD subroutine) Tau - the result of a HMatrixTD subroutine Output parameters: Q - transformation matrix. array with elements [0..N-1, 0..N-1]. -- ALGLIB -- Copyright 2005-2010 by Bochkanov Sergey *************************************************************************)
procedure HMatrixTDUnpackQ(const A : TComplex2DArray; const N : AlglibInteger; const IsUpper : Boolean; const Tau : TComplex1DArray; var Q : TComplex2DArray);

rmatrixbd subroutine

(************************************************************************* Reduction of a rectangular matrix to bidiagonal form The algorithm reduces the rectangular matrix A to bidiagonal form by orthogonal transformations P and Q: A = Q*B*P. Input parameters: A - source matrix. array[0..M-1, 0..N-1] M - number of rows in matrix A. N - number of columns in matrix A. Output parameters: A - matrices Q, B, P in compact form (see below). TauQ - scalar factors which are used to form matrix Q. TauP - scalar factors which are used to form matrix P. The main diagonal and one of the secondary diagonals of matrix A are replaced with bidiagonal matrix B. Other elements contain elementary reflections which form MxM matrix Q and NxN matrix P, respectively. If M>=N, B is the upper bidiagonal MxN matrix and is stored in the corresponding elements of matrix A. Matrix Q is represented as a product of elementary reflections Q = H(0)*H(1)*...*H(n-1), where H(i) = 1-tau*v*v'. Here tau is a scalar which is stored in TauQ[i], and vector v has the following structure: v(0:i-1)=0, v(i)=1, v(i+1:m-1) is stored in elements A(i+1:m-1,i). Matrix P is as follows: P = G(0)*G(1)*...*G(n-2), where G(i) = 1 - tau*u*u'. Tau is stored in TauP[i], u(0:i)=0, u(i+1)=1, u(i+2:n-1) is stored in elements A(i,i+2:n-1). If M<N, B is the lower bidiagonal MxN matrix and is stored in the corresponding elements of matrix A. Q = H(0)*H(1)*...*H(m-2), where H(i) = 1 - tau*v*v', tau is stored in TauQ, v(0:i)=0, v(i+1)=1, v(i+2:m-1) is stored in elements A(i+2:m-1,i). P = G(0)*G(1)*...*G(m-1), G(i) = 1-tau*u*u', tau is stored in TauP, u(0:i-1)=0, u(i)=1, u(i+1:n-1) is stored in A(i,i+1:n-1). EXAMPLE: m=6, n=5 (m > n): m=5, n=6 (m < n): ( d e u1 u1 u1 ) ( d u1 u1 u1 u1 u1 ) ( v1 d e u2 u2 ) ( e d u2 u2 u2 u2 ) ( v1 v2 d e u3 ) ( v1 e d u3 u3 u3 ) ( v1 v2 v3 d e ) ( v1 v2 e d u4 u4 ) ( v1 v2 v3 v4 d ) ( v1 v2 v3 e d u5 ) ( v1 v2 v3 v4 v5 ) Here vi and ui are vectors which form H(i) and G(i), and d and e - are the diagonal and off-diagonal elements of matrix B. -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University September 30, 1994. Sergey Bochkanov, ALGLIB project, translation from FORTRAN to pseudocode, 2007-2010. *************************************************************************)
procedure RMatrixBD(var A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var TauQ : TReal1DArray; var TauP : TReal1DArray);

rmatrixbdmultiplybyp subroutine

(************************************************************************* Multiplication by matrix P which reduces matrix A to bidiagonal form. The algorithm allows pre- or post-multiply by P or P'. Input parameters: QP - matrices Q and P in compact form. Output of RMatrixBD subroutine. M - number of rows in matrix A. N - number of columns in matrix A. TAUP - scalar factors which are used to form P. Output of RMatrixBD subroutine. Z - multiplied matrix. Array whose indexes range within [0..ZRows-1,0..ZColumns-1]. ZRows - number of rows in matrix Z. If FromTheRight=False, ZRows=N, otherwise ZRows can be arbitrary. ZColumns - number of columns in matrix Z. If FromTheRight=True, ZColumns=N, otherwise ZColumns can be arbitrary. FromTheRight - pre- or post-multiply. DoTranspose - multiply by P or P'. Output parameters: Z - product of Z and P. Array whose indexes range within [0..ZRows-1,0..ZColumns-1]. If ZRows=0 or ZColumns=0, the array is not modified. -- ALGLIB -- 2005-2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixBDMultiplyByP(const QP : TReal2DArray; M : AlglibInteger; N : AlglibInteger; const TauP : TReal1DArray; var Z : TReal2DArray; ZRows : AlglibInteger; ZColumns : AlglibInteger; FromTheRight : Boolean; DoTranspose : Boolean);

rmatrixbdmultiplybyq subroutine

(************************************************************************* Multiplication by matrix Q which reduces matrix A to bidiagonal form. The algorithm allows pre- or post-multiply by Q or Q'. Input parameters: QP - matrices Q and P in compact form. Output of ToBidiagonal subroutine. M - number of rows in matrix A. N - number of columns in matrix A. TAUQ - scalar factors which are used to form Q. Output of ToBidiagonal subroutine. Z - multiplied matrix. array[0..ZRows-1,0..ZColumns-1] ZRows - number of rows in matrix Z. If FromTheRight=False, ZRows=M, otherwise ZRows can be arbitrary. ZColumns - number of columns in matrix Z. If FromTheRight=True, ZColumns=M, otherwise ZColumns can be arbitrary. FromTheRight - pre- or post-multiply. DoTranspose - multiply by Q or Q'. Output parameters: Z - product of Z and Q. Array[0..ZRows-1,0..ZColumns-1] If ZRows=0 or ZColumns=0, the array is not modified. -- ALGLIB -- 2005-2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixBDMultiplyByQ(const QP : TReal2DArray; M : AlglibInteger; N : AlglibInteger; const TauQ : TReal1DArray; var Z : TReal2DArray; ZRows : AlglibInteger; ZColumns : AlglibInteger; FromTheRight : Boolean; DoTranspose : Boolean);

rmatrixbdunpackdiagonals subroutine

(************************************************************************* Unpacking of the main and secondary diagonals of bidiagonal decomposition of matrix A. Input parameters: B - output of RMatrixBD subroutine. M - number of rows in matrix B. N - number of columns in matrix B. Output parameters: IsUpper - True, if the matrix is upper bidiagonal. otherwise IsUpper is False. D - the main diagonal. Array whose index ranges within [0..Min(M,N)-1]. E - the secondary diagonal (upper or lower, depending on the value of IsUpper). Array index ranges within [0..Min(M,N)-1], the last element is not used. -- ALGLIB -- 2005-2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixBDUnpackDiagonals(const B : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var IsUpper : Boolean; var D : TReal1DArray; var E : TReal1DArray);

rmatrixbdunpackpt subroutine

(************************************************************************* Unpacking matrix P which reduces matrix A to bidiagonal form. The subroutine returns transposed matrix P. Input parameters: QP - matrices Q and P in compact form. Output of ToBidiagonal subroutine. M - number of rows in matrix A. N - number of columns in matrix A. TAUP - scalar factors which are used to form P. Output of ToBidiagonal subroutine. PTRows - required number of rows of matrix P^T. N >= PTRows >= 0. Output parameters: PT - first PTRows columns of matrix P^T Array[0..PTRows-1, 0..N-1] If PTRows=0, the array is not modified. -- ALGLIB -- 2005-2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixBDUnpackPT(const QP : TReal2DArray; M : AlglibInteger; N : AlglibInteger; const TauP : TReal1DArray; PTRows : AlglibInteger; var PT : TReal2DArray);

rmatrixbdunpackq subroutine

(************************************************************************* Unpacking matrix Q which reduces a matrix to bidiagonal form. Input parameters: QP - matrices Q and P in compact form. Output of ToBidiagonal subroutine. M - number of rows in matrix A. N - number of columns in matrix A. TAUQ - scalar factors which are used to form Q. Output of ToBidiagonal subroutine. QColumns - required number of columns in matrix Q. M>=QColumns>=0. Output parameters: Q - first QColumns columns of matrix Q. Array[0..M-1, 0..QColumns-1] If QColumns=0, the array is not modified. -- ALGLIB -- 2005-2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixBDUnpackQ(const QP : TReal2DArray; M : AlglibInteger; N : AlglibInteger; const TauQ : TReal1DArray; QColumns : AlglibInteger; var Q : TReal2DArray);

rmatrixhessenberg subroutine

(************************************************************************* Reduction of a square matrix to upper Hessenberg form: Q'*A*Q = H, where Q is an orthogonal matrix, H - Hessenberg matrix. Input parameters: A - matrix A with elements [0..N-1, 0..N-1] N - size of matrix A. Output parameters: A - matrices Q and P in compact form (see below). Tau - array of scalar factors which are used to form matrix Q. Array whose index ranges within [0..N-2] Matrix H is located on the main diagonal, on the lower secondary diagonal and above the main diagonal of matrix A. The elements which are used to form matrix Q are situated in array Tau and below the lower secondary diagonal of matrix A as follows: Matrix Q is represented as a product of elementary reflections Q = H(0)*H(2)*...*H(n-2), where each H(i) is given by H(i) = 1 - tau * v * (v^T) where tau is a scalar stored in Tau[I]; v - is a real vector, so that v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) stored in A(i+2:n-1,i). -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1992 *************************************************************************)
procedure RMatrixHessenberg(var A : TReal2DArray; N : AlglibInteger; var Tau : TReal1DArray);

rmatrixhessenbergunpackh subroutine

(************************************************************************* Unpacking matrix H (the result of matrix A reduction to upper Hessenberg form) Input parameters: A - output of RMatrixHessenberg subroutine. N - size of matrix A. Output parameters: H - matrix H. Array whose indexes range within [0..N-1, 0..N-1]. -- ALGLIB -- 2005-2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixHessenbergUnpackH(const A : TReal2DArray; N : AlglibInteger; var H : TReal2DArray);

rmatrixhessenbergunpackq subroutine

(************************************************************************* Unpacking matrix Q which reduces matrix A to upper Hessenberg form Input parameters: A - output of RMatrixHessenberg subroutine. N - size of matrix A. Tau - scalar factors which are used to form Q. Output of RMatrixHessenberg subroutine. Output parameters: Q - matrix Q. Array whose indexes range within [0..N-1, 0..N-1]. -- ALGLIB -- 2005-2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixHessenbergUnpackQ(const A : TReal2DArray; N : AlglibInteger; const Tau : TReal1DArray; var Q : TReal2DArray);

rmatrixlq subroutine

(************************************************************************* LQ decomposition of a rectangular matrix of size MxN Input parameters: A - matrix A whose indexes range within [0..M-1, 0..N-1]. M - number of rows in matrix A. N - number of columns in matrix A. Output parameters: A - matrices L and Q in compact form (see below) Tau - array of scalar factors which are used to form matrix Q. Array whose index ranges within [0..Min(M,N)-1]. Matrix A is represented as A = LQ, where Q is an orthogonal matrix of size MxM, L - lower triangular (or lower trapezoid) matrix of size M x N. The elements of matrix L are located on and below the main diagonal of matrix A. The elements which are located in Tau array and above the main diagonal of matrix A are used to form matrix Q as follows: Matrix Q is represented as a product of elementary reflections Q = H(k-1)*H(k-2)*...*H(1)*H(0), where k = min(m,n), and each H(i) is of the form H(i) = 1 - tau * v * (v^T) where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1)=0, v(i) = 1, v(i+1:n-1) stored in A(i,i+1:n-1). -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixLQ(var A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var Tau : TReal1DArray);

rmatrixlqunpackl subroutine

(************************************************************************* Unpacking of matrix L from the LQ decomposition of a matrix A Input parameters: A - matrices Q and L in compact form. Output of RMatrixLQ subroutine. M - number of rows in given matrix A. M>=0. N - number of columns in given matrix A. N>=0. Output parameters: L - matrix L, array[0..M-1, 0..N-1]. -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixLQUnpackL(const A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var L : TReal2DArray);

rmatrixlqunpackq subroutine

(************************************************************************* Partial unpacking of matrix Q from the LQ decomposition of a matrix A Input parameters: A - matrices L and Q in compact form. Output of RMatrixLQ subroutine. M - number of rows in given matrix A. M>=0. N - number of columns in given matrix A. N>=0. Tau - scalar factors which are used to form Q. Output of the RMatrixLQ subroutine. QRows - required number of rows in matrix Q. N>=QRows>=0. Output parameters: Q - first QRows rows of matrix Q. Array whose indexes range within [0..QRows-1, 0..N-1]. If QRows=0, the array remains unchanged. -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixLQUnpackQ(const A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; const Tau : TReal1DArray; QRows : AlglibInteger; var Q : TReal2DArray);

rmatrixqr subroutine

(************************************************************************* QR decomposition of a rectangular matrix of size MxN Input parameters: A - matrix A whose indexes range within [0..M-1, 0..N-1]. M - number of rows in matrix A. N - number of columns in matrix A. Output parameters: A - matrices Q and R in compact form (see below). Tau - array of scalar factors which are used to form matrix Q. Array whose index ranges within [0.. Min(M-1,N-1)]. Matrix A is represented as A = QR, where Q is an orthogonal matrix of size MxM, R - upper triangular (or upper trapezoid) matrix of size M x N. The elements of matrix R are located on and above the main diagonal of matrix A. The elements which are located in Tau array and below the main diagonal of matrix A are used to form matrix Q as follows: Matrix Q is represented as a product of elementary reflections Q = H(0)*H(2)*...*H(k-1), where k = min(m,n), and each H(i) is in the form H(i) = 1 - tau * v * (v^T) where tau is a scalar stored in Tau[I]; v - real vector, so that v(0:i-1) = 0, v(i) = 1, v(i+1:m-1) stored in A(i+1:m-1,i). -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixQR(var A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var Tau : TReal1DArray);

rmatrixqrunpackq subroutine

(************************************************************************* Partial unpacking of matrix Q from the QR decomposition of a matrix A Input parameters: A - matrices Q and R in compact form. Output of RMatrixQR subroutine. M - number of rows in given matrix A. M>=0. N - number of columns in given matrix A. N>=0. Tau - scalar factors which are used to form Q. Output of the RMatrixQR subroutine. QColumns - required number of columns of matrix Q. M>=QColumns>=0. Output parameters: Q - first QColumns columns of matrix Q. Array whose indexes range within [0..M-1, 0..QColumns-1]. If QColumns=0, the array remains unchanged. -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixQRUnpackQ(const A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; const Tau : TReal1DArray; QColumns : AlglibInteger; var Q : TReal2DArray);

rmatrixqrunpackr subroutine

(************************************************************************* Unpacking of matrix R from the QR decomposition of a matrix A Input parameters: A - matrices Q and R in compact form. Output of RMatrixQR subroutine. M - number of rows in given matrix A. M>=0. N - number of columns in given matrix A. N>=0. Output parameters: R - matrix R, array[0..M-1, 0..N-1]. -- ALGLIB routine -- 17.02.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixQRUnpackR(const A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var R : TReal2DArray);

smatrixtd subroutine

(************************************************************************* Reduction of a symmetric matrix which is given by its higher or lower triangular part to a tridiagonal matrix using orthogonal similarity transformation: Q'*A*Q=T. Input parameters: A - matrix to be transformed array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - storage format. If IsUpper = True, then matrix A is given by its upper triangle, and the lower triangle is not used and not modified by the algorithm, and vice versa if IsUpper = False. Output parameters: A - matrices T and Q in compact form (see lower) Tau - array of factors which are forming matrices H(i) array with elements [0..N-2]. D - main diagonal of symmetric matrix T. array with elements [0..N-1]. E - secondary diagonal of symmetric matrix T. array with elements [0..N-2]. If IsUpper=True, the matrix Q is represented as a product of elementary reflectors Q = H(n-2) . . . H(2) H(0). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(i+1:n-1) = 0, v(i) = 1, v(0:i-1) is stored on exit in A(0:i-1,i+1), and tau in TAU(i). If IsUpper=False, the matrix Q is represented as a product of elementary reflectors Q = H(0) H(2) . . . H(n-2). Each H(i) has the form H(i) = I - tau * v * v' where tau is a real scalar, and v is a real vector with v(0:i) = 0, v(i+1) = 1, v(i+2:n-1) is stored on exit in A(i+2:n-1,i), and tau in TAU(i). The contents of A on exit are illustrated by the following examples with n = 5: if UPLO = 'U': if UPLO = 'L': ( d e v1 v2 v3 ) ( d ) ( d e v2 v3 ) ( e d ) ( d e v3 ) ( v0 e d ) ( d e ) ( v0 v1 e d ) ( d ) ( v0 v1 v2 e d ) where d and e denote diagonal and off-diagonal elements of T, and vi denotes an element of the vector defining H(i). -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University October 31, 1992 *************************************************************************)
procedure SMatrixTD(var A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; var Tau : TReal1DArray; var D : TReal1DArray; var E : TReal1DArray);

smatrixtdunpackq subroutine

(************************************************************************* Unpacking matrix Q which reduces symmetric matrix to a tridiagonal form. Input parameters: A - the result of a SMatrixTD subroutine N - size of matrix A. IsUpper - storage format (a parameter of SMatrixTD subroutine) Tau - the result of a SMatrixTD subroutine Output parameters: Q - transformation matrix. array with elements [0..N-1, 0..N-1]. -- ALGLIB -- Copyright 2005-2010 by Bochkanov Sergey *************************************************************************)
procedure SMatrixTDUnpackQ(const A : TReal2DArray; const N : AlglibInteger; const IsUpper : Boolean; const Tau : TReal1DArray; var Q : TReal2DArray);

pca unit

Subroutines

pcabuildbasis

pcabuildbasis subroutine

(************************************************************************* Principal components analysis Subroutine builds orthogonal basis where first axis corresponds to direction with maximum variance, second axis maximizes variance in subspace orthogonal to first axis and so on. It should be noted that, unlike LDA, PCA does not use class labels. INPUT PARAMETERS: X - dataset, array[0..NPoints-1,0..NVars-1]. matrix contains ONLY INDEPENDENT VARIABLES. NPoints - dataset size, NPoints>=0 NVars - number of independent variables, NVars>=1 ÂÛÕÎÄÍÛÅ ÏÀÐÀÌÅÒÐÛ: Info - return code: * -4, if SVD subroutine haven't converged * -1, if wrong parameters has been passed (NPoints<0, NVars<1) * 1, if task is solved S2 - array[0..NVars-1]. variance values corresponding to basis vectors. V - array[0..NVars-1,0..NVars-1] matrix, whose columns store basis vectors. -- ALGLIB -- Copyright 25.08.2008 by Bochkanov Sergey *************************************************************************)
procedure PCABuildBasis(const X : TReal2DArray; NPoints : AlglibInteger; NVars : AlglibInteger; var Info : AlglibInteger; var S2 : TReal1DArray; var V : TReal2DArray);

poissondistr unit

Subroutines

invpoissondistribution
poissoncdistribution
poissondistribution

invpoissondistribution subroutine

(************************************************************************* Inverse Poisson distribution Finds the Poisson variable x such that the integral from 0 to x of the Poisson density is equal to the given probability y. This is accomplished using the inverse gamma integral function and the relation m = igami( k+1, y ). ACCURACY: See inverse incomplete gamma function Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function InvPoissonDistribution(k : AlglibInteger; y : Double):Double;

poissoncdistribution subroutine

(************************************************************************* Complemented Poisson distribution Returns the sum of the terms k+1 to infinity of the Poisson distribution: inf. j -- -m m > e -- -- j! j=k+1 The terms are not summed directly; instead the incomplete gamma integral is employed, according to the formula y = pdtrc( k, m ) = igam( k+1, m ). The arguments must both be positive. ACCURACY: See incomplete gamma function Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function PoissonCDistribution(k : AlglibInteger; m : Double):Double;

poissondistribution subroutine

(************************************************************************* Poisson distribution Returns the sum of the first k+1 terms of the Poisson distribution: k j -- -m m > e -- -- j! j=0 The terms are not summed directly; instead the incomplete gamma integral is employed, according to the relation y = pdtr( k, m ) = igamc( k+1, m ). The arguments must both be positive. ACCURACY: See incomplete gamma function Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function PoissonDistribution(k : AlglibInteger; m : Double):Double;

polint unit

Structures

polynomialfitreport

Subroutines

polynomialbuild
polynomialbuildcheb1
polynomialbuildcheb2
polynomialbuildeqdist
polynomialcalccheb1
polynomialcalccheb2
polynomialcalceqdist
polynomialfit
polynomialfitwc

Examples

polint_cheb1
polint_cheb2
polint_eqdist
polint_fit
polint_gen

polynomialfitreport structure

(************************************************************************* Polynomial fitting report: TaskRCond reciprocal of task's condition number RMSError RMS error AvgError average error AvgRelError average relative error (for non-zero Y[I]) MaxError maximum error *************************************************************************)
PolynomialFitReport = record TaskRCond : Double; RMSError : Double; AvgError : Double; AvgRelError : Double; MaxError : Double; end;

polynomialbuild subroutine

(************************************************************************* Lagrange intepolant: generation of the model on the general grid. This function has O(N^2) complexity. INPUT PARAMETERS: X - abscissas, array[0..N-1] Y - function values, array[0..N-1] N - number of points, N>=1 OIYTPUT PARAMETERS P - barycentric model which represents Lagrange interpolant (see ratint unit info and BarycentricCalc() description for more information). -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
procedure PolynomialBuild(const X : TReal1DArray; const Y : TReal1DArray; N : AlglibInteger; var P : BarycentricInterpolant);

Examples:   polint_gen  

polynomialbuildcheb1 subroutine

(************************************************************************* Lagrange intepolant on Chebyshev grid (first kind). This function has O(N) complexity. INPUT PARAMETERS: A - left boundary of [A,B] B - right boundary of [A,B] Y - function values at the nodes, array[0..N-1], Y[I] = Y(0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n))) N - number of points, N>=1 for N=1 a constant model is constructed. OIYTPUT PARAMETERS P - barycentric model which represents Lagrange interpolant (see ratint unit info and BarycentricCalc() description for more information). -- ALGLIB -- Copyright 03.12.2009 by Bochkanov Sergey *************************************************************************)
procedure PolynomialBuildCheb1(A : Double; B : Double; const Y : TReal1DArray; N : AlglibInteger; var P : BarycentricInterpolant);

Examples:   polint_cheb1  

polynomialbuildcheb2 subroutine

(************************************************************************* Lagrange intepolant on Chebyshev grid (second kind). This function has O(N) complexity. INPUT PARAMETERS: A - left boundary of [A,B] B - right boundary of [A,B] Y - function values at the nodes, array[0..N-1], Y[I] = Y(0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1))) N - number of points, N>=1 for N=1 a constant model is constructed. OIYTPUT PARAMETERS P - barycentric model which represents Lagrange interpolant (see ratint unit info and BarycentricCalc() description for more information). -- ALGLIB -- Copyright 03.12.2009 by Bochkanov Sergey *************************************************************************)
procedure PolynomialBuildCheb2(A : Double; B : Double; const Y : TReal1DArray; N : AlglibInteger; var P : BarycentricInterpolant);

Examples:   polint_cheb2  

polynomialbuildeqdist subroutine

(************************************************************************* Lagrange intepolant: generation of the model on equidistant grid. This function has O(N) complexity. INPUT PARAMETERS: A - left boundary of [A,B] B - right boundary of [A,B] Y - function values at the nodes, array[0..N-1] N - number of points, N>=1 for N=1 a constant model is constructed. OIYTPUT PARAMETERS P - barycentric model which represents Lagrange interpolant (see ratint unit info and BarycentricCalc() description for more information). -- ALGLIB -- Copyright 03.12.2009 by Bochkanov Sergey *************************************************************************)
procedure PolynomialBuildEqDist(A : Double; B : Double; const Y : TReal1DArray; N : AlglibInteger; var P : BarycentricInterpolant);

Examples:   polint_eqdist  

polynomialcalccheb1 subroutine

(************************************************************************* Fast polynomial interpolation function on Chebyshev points (first kind) with O(N) complexity. INPUT PARAMETERS: A - left boundary of [A,B] B - right boundary of [A,B] F - function values, array[0..N-1] N - number of points on Chebyshev grid (first kind), X[i] = 0.5*(B+A) + 0.5*(B-A)*Cos(PI*(2*i+1)/(2*n)) for N=1 a constant model is constructed. T - position where P(x) is calculated RESULT value of the Lagrange interpolant at T IMPORTANT this function provides fast interface which is not overflow-safe nor it is very precise. the best option is to use PolIntBuildCheb1()/BarycentricCalc() subroutines unless you are pretty sure that your data will not result in overflow. -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
function PolynomialCalcCheb1(A : Double; B : Double; const F : TReal1DArray; N : AlglibInteger; T : Double):Double;

polynomialcalccheb2 subroutine

(************************************************************************* Fast polynomial interpolation function on Chebyshev points (second kind) with O(N) complexity. INPUT PARAMETERS: A - left boundary of [A,B] B - right boundary of [A,B] F - function values, array[0..N-1] N - number of points on Chebyshev grid (second kind), X[i] = 0.5*(B+A) + 0.5*(B-A)*Cos(PI*i/(n-1)) for N=1 a constant model is constructed. T - position where P(x) is calculated RESULT value of the Lagrange interpolant at T IMPORTANT this function provides fast interface which is not overflow-safe nor it is very precise. the best option is to use PolIntBuildCheb2()/BarycentricCalc() subroutines unless you are pretty sure that your data will not result in overflow. -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
function PolynomialCalcCheb2(A : Double; B : Double; const F : TReal1DArray; N : AlglibInteger; T : Double):Double;

polynomialcalceqdist subroutine

(************************************************************************* Fast equidistant polynomial interpolation function with O(N) complexity INPUT PARAMETERS: A - left boundary of [A,B] B - right boundary of [A,B] F - function values, array[0..N-1] N - number of points on equidistant grid, N>=1 for N=1 a constant model is constructed. T - position where P(x) is calculated RESULT value of the Lagrange interpolant at T IMPORTANT this function provides fast interface which is not overflow-safe nor it is very precise. the best option is to use PolynomialBuildEqDist()/BarycentricCalc() subroutines unless you are pretty sure that your data will not result in overflow. -- ALGLIB -- Copyright 02.12.2009 by Bochkanov Sergey *************************************************************************)
function PolynomialCalcEqDist(A : Double; B : Double; const F : TReal1DArray; N : AlglibInteger; T : Double):Double;

polynomialfit subroutine

(************************************************************************* Least squares fitting by polynomial. This subroutine is "lightweight" alternative for more complex and feature- rich PolynomialFitWC(). See PolynomialFitWC() for more information about subroutine parameters (we don't duplicate it here because of length) -- ALGLIB PROJECT -- Copyright 12.10.2009 by Bochkanov Sergey *************************************************************************)
procedure PolynomialFit(const X : TReal1DArray; const Y : TReal1DArray; N : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var P : BarycentricInterpolant; var Rep : PolynomialFitReport);

Examples:   polint_fit  

polynomialfitwc subroutine

(************************************************************************* Weighted fitting by Chebyshev polynomial in barycentric form, with constraints on function values or first derivatives. Small regularizing term is used when solving constrained tasks (to improve stability). Task is linear, so linear least squares solver is used. Complexity of this computational scheme is O(N*M^2), mostly dominated by least squares solver SEE ALSO: PolynomialFit() INPUT PARAMETERS: X - points, array[0..N-1]. Y - function values, array[0..N-1]. W - weights, array[0..N-1] Each summand in square sum of approximation deviations from given values is multiplied by the square of corresponding weight. Fill it by 1's if you don't want to solve weighted task. N - number of points, N>0. XC - points where polynomial values/derivatives are constrained, array[0..K-1]. YC - values of constraints, array[0..K-1] DC - array[0..K-1], types of constraints: * DC[i]=0 means that P(XC[i])=YC[i] * DC[i]=1 means that P'(XC[i])=YC[i] SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS K - number of constraints, 0<=K<M. K=0 means no constraints (XC/YC/DC are not used in such cases) M - number of basis functions (= polynomial_degree + 1), M>=1 OUTPUT PARAMETERS: Info- same format as in LSFitLinearW() subroutine: * Info>0 task is solved * Info<=0 an error occured: -4 means inconvergence of internal SVD -3 means inconsistent constraints -1 means another errors in parameters passed (N<=0, for example) P - interpolant in barycentric form. Rep - report, same format as in LSFitLinearW() subroutine. Following fields are set: * RMSError rms error on the (X,Y). * AvgError average error on the (X,Y). * AvgRelError average relative error on the non-zero Y * MaxError maximum error NON-WEIGHTED ERRORS ARE CALCULATED IMPORTANT: this subroitine doesn't calculate task's condition number for K<>0. SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES: Setting constraints can lead to undesired results, like ill-conditioned behavior, or inconsistency being detected. From the other side, it allows us to improve quality of the fit. Here we summarize our experience with constrained regression splines: * even simple constraints can be inconsistent, see Wikipedia article on this subject: http://en.wikipedia.org/wiki/Birkhoff_interpolation * the greater is M (given fixed constraints), the more chances that constraints will be consistent * in the general case, consistency of constraints is NOT GUARANTEED. * in the one special cases, however, we can guarantee consistency. This case is: M>1 and constraints on the function values (NOT DERIVATIVES) Our final recommendation is to use constraints WHEN AND ONLY when you can't solve your task without them. Anything beyond special cases given above is not guaranteed and may result in inconsistency. -- ALGLIB PROJECT -- Copyright 10.12.2009 by Bochkanov Sergey *************************************************************************)
procedure PolynomialFitWC(X : TReal1DArray; Y : TReal1DArray; const W : TReal1DArray; N : AlglibInteger; XC : TReal1DArray; YC : TReal1DArray; const DC : TInteger1DArray; K : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var P : BarycentricInterpolant; var Rep : PolynomialFitReport);

Examples:   polint_fit  

polint_cheb1 example

var
    Y : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    T : Double;
    P : BarycentricInterpolant;
    V : Double;
    DV : Double;
    D2V : Double;
    Err : Double;
    MaxErr : Double;
begin
    
    //
    // Demonstration
    //
    Write(Format('POLYNOMIAL INTERPOLATION'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x), [0, pi]'#13#10'',[]));
    Write(Format('Second degree polynomial is used'#13#10''#13#10'',[]));
    
    //
    // Create polynomial interpolant
    //
    N := 3;
    SetLength(Y, N);
    I:=0;
    while I<=N-1 do
    begin
        Y[I] := Sin(Double(0.5)*Pi*(Double(1.0)+Cos(Pi*(2*I+1)/(2*N))));
        Inc(I);
    end;
    PolynomialBuildCheb1(0, Pi, Y, N, P);
    
    //
    // Output results
    //
    BarycentricDiff2(P, 0, V, DV, D2V);
    Write(Format('                 P(x)    F(x) '#13#10'',[]));
    Write(Format('function       %6.3f  %6.3f '#13#10'',[
        BarycentricCalc(P, 0),
        Double(Variant(0))]));
    Write(Format('d/dx(0)        %6.3f  %6.3f '#13#10'',[
        DV,
        Double(Variant(1))]));
    Write(Format('d2/dx2(0)      %6.3f  %6.3f '#13#10'',[
        D2V,
        Double(Variant(0))]));
    Write(Format(''#13#10''#13#10'',[]));
end.

polint_cheb2 example

var
    Y : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    T : Double;
    P : BarycentricInterpolant;
    V : Double;
    DV : Double;
    D2V : Double;
    Err : Double;
    MaxErr : Double;
begin
    
    //
    // Demonstration
    //
    Write(Format('POLYNOMIAL INTERPOLATION'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x), [0, pi]'#13#10'',[]));
    Write(Format('Second degree polynomial is used'#13#10''#13#10'',[]));
    
    //
    // Create polynomial interpolant
    //
    N := 3;
    SetLength(Y, N);
    I:=0;
    while I<=N-1 do
    begin
        Y[I] := Sin(Double(0.5)*Pi*(Double(1.0)+Cos(Pi*I/(N-1))));
        Inc(I);
    end;
    PolynomialBuildCheb2(0, Pi, Y, N, P);
    
    //
    // Output results
    //
    BarycentricDiff2(P, 0, V, DV, D2V);
    Write(Format('                 P(x)    F(x) '#13#10'',[]));
    Write(Format('function       %6.3f  %6.3f '#13#10'',[
        BarycentricCalc(P, 0),
        Double(Variant(0))]));
    Write(Format('d/dx(0)        %6.3f  %6.3f '#13#10'',[
        DV,
        Double(Variant(1))]));
    Write(Format('d2/dx2(0)      %6.3f  %6.3f '#13#10'',[
        D2V,
        Double(Variant(0))]));
    Write(Format(''#13#10''#13#10'',[]));
end.

polint_eqdist example

var
    Y : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    T : Double;
    P : BarycentricInterpolant;
    V : Double;
    DV : Double;
    D2V : Double;
    Err : Double;
    MaxErr : Double;
begin
    
    //
    // Demonstration
    //
    Write(Format('POLYNOMIAL INTERPOLATION'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x), [0, pi]'#13#10'',[]));
    Write(Format('Second degree polynomial is used'#13#10''#13#10'',[]));
    
    //
    // Create polynomial interpolant
    //
    N := 3;
    SetLength(Y, N);
    I:=0;
    while I<=N-1 do
    begin
        Y[I] := Sin(Pi*I/(N-1));
        Inc(I);
    end;
    PolynomialBuildEqDist(0, Pi, Y, N, P);
    
    //
    // Output results
    //
    BarycentricDiff2(P, 0, V, DV, D2V);
    Write(Format('                 P(x)    F(x) '#13#10'',[]));
    Write(Format('function       %6.3f  %6.3f '#13#10'',[
        BarycentricCalc(P, 0),
        Double(Variant(0))]));
    Write(Format('d/dx(0)        %6.3f  %6.3f '#13#10'',[
        DV,
        Double(Variant(1))]));
    Write(Format('d2/dx2(0)      %6.3f  %6.3f '#13#10'',[
        D2V,
        Double(Variant(0))]));
    Write(Format(''#13#10''#13#10'',[]));
end.

polint_fit example

var
    M : AlglibInteger;
    N : AlglibInteger;
    X : TReal1DArray;
    Y : TReal1DArray;
    W : TReal1DArray;
    XC : TReal1DArray;
    YC : TReal1DArray;
    DC : TInteger1DArray;
    Rep : PolynomialFitReport;
    Info : AlglibInteger;
    P : BarycentricInterpolant;
    I : AlglibInteger;
    J : AlglibInteger;
    A : Double;
    B : Double;
    V : Double;
    DV : Double;
begin
    Write(Format(''#13#10''#13#10'Fitting exp(2*x) at [-1,+1] by polinomial'#13#10''#13#10'',[]));
    Write(Format('Fit type             rms.err max.err    p(0)   dp(0)'#13#10'',[]));
    
    //
    // Prepare points
    //
    M := 5;
    A := -1;
    B := +1;
    N := 1000;
    SetLength(X, N);
    SetLength(Y, N);
    SetLength(W, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := A+(B-A)*I/(N-1);
        Y[I] := Exp(2*X[I]);
        W[I] := Double(1.0);
        Inc(I);
    end;
    
    //
    // Fitting:
    // a) f(x)=exp(2*x) at [-1,+1]
    // b) by 5th degree polynomial
    // c) without constraints
    //
    PolynomialFit(X, Y, N, M, Info, P, Rep);
    BarycentricDiff1(P, Double(0.0), V, DV);
    Write(Format('Unconstrained        %7.4f %7.4f %7.4f %7.4f'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        V,
        DV]));
    
    //
    // Fitting:
    // a) f(x)=exp(2*x) at [-1,+1]
    // b) by 5th degree polynomial
    // c) constrained: p(0)=1
    //
    SetLength(XC, 1);
    SetLength(YC, 1);
    SetLength(DC, 1);
    XC[0] := 0;
    YC[0] := 1;
    DC[0] := 0;
    PolynomialFitWC(X, Y, W, N, XC, YC, DC, 1, M, Info, P, Rep);
    BarycentricDiff1(P, Double(0.0), V, DV);
    Write(Format('Constrained, p(0)=1  %7.4f %7.4f %7.4f %7.4f'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        V,
        DV]));
    
    //
    // Fitting:
    // a) f(x)=exp(2*x) at [-1,+1]
    // b) by 5th degree polynomial
    // c) constrained: dp(0)=2
    //
    SetLength(XC, 1);
    SetLength(YC, 1);
    SetLength(DC, 1);
    XC[0] := 0;
    YC[0] := 2;
    DC[0] := 1;
    PolynomialFitWC(X, Y, W, N, XC, YC, DC, 1, M, Info, P, Rep);
    BarycentricDiff1(P, Double(0.0), V, DV);
    Write(Format('Constrained, dp(0)=2 %7.4f %7.4f %7.4f %7.4f'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        V,
        DV]));
    
    //
    // Fitting:
    // a) f(x)=exp(2*x) at [-1,+1]
    // b) by 5th degree polynomial
    // c) constrained: p(0)=1, dp(0)=2
    //
    SetLength(XC, 2);
    SetLength(YC, 2);
    SetLength(DC, 2);
    XC[0] := 0;
    YC[0] := 1;
    DC[0] := 0;
    XC[1] := 0;
    YC[1] := 2;
    DC[1] := 1;
    PolynomialFitWC(X, Y, W, N, XC, YC, DC, 2, M, Info, P, Rep);
    BarycentricDiff1(P, Double(0.0), V, DV);
    Write(Format('Constrained, both    %7.4f %7.4f %7.4f %7.4f'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        V,
        DV]));
    Write(Format(''#13#10''#13#10'',[]));
end.

polint_gen example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    T : Double;
    P : BarycentricInterpolant;
    V : Double;
    DV : Double;
    D2V : Double;
    Err : Double;
    MaxErr : Double;
begin
    
    //
    // Demonstration
    //
    Write(Format('POLYNOMIAL INTERPOLATION'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x), [0, pi]'#13#10'',[]));
    Write(Format('Second degree polynomial is used'#13#10''#13#10'',[]));
    
    //
    // Create polynomial interpolant
    //
    N := 3;
    SetLength(X, N);
    SetLength(Y, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := Pi*I/(N-1);
        Y[I] := Sin(X[I]);
        Inc(I);
    end;
    PolynomialBuild(X, Y, N, P);
    
    //
    // Output results
    //
    BarycentricDiff2(P, 0, V, DV, D2V);
    Write(Format('                 P(x)    F(x) '#13#10'',[]));
    Write(Format('function       %6.3f  %6.3f '#13#10'',[
        BarycentricCalc(P, 0),
        Double(Variant(0))]));
    Write(Format('d/dx(0)        %6.3f  %6.3f '#13#10'',[
        DV,
        Double(Variant(1))]));
    Write(Format('d2/dx2(0)      %6.3f  %6.3f '#13#10'',[
        D2V,
        Double(Variant(0))]));
    Write(Format(''#13#10''#13#10'',[]));
end.

psif unit

Subroutines

psi

psi subroutine

(************************************************************************* Psi (digamma) function d - psi(x) = -- ln | (x) dx is the logarithmic derivative of the gamma function. For integer x, n-1 - psi(n) = -EUL + > 1/k. - k=1 This formula is used for 0 < n <= 10. If x is negative, it is transformed to a positive argument by the reflection formula psi(1-x) = psi(x) + pi cot(pi x). For general positive x, the argument is made greater than 10 using the recurrence psi(x+1) = psi(x) + 1/x. Then the following asymptotic expansion is applied: inf. B - 2k psi(x) = log(x) - 1/2x - > ------- - 2k k=1 2k x where the B2k are Bernoulli numbers. ACCURACY: Relative error (except absolute when |psi| < 1): arithmetic domain # trials peak rms IEEE 0,30 30000 1.3e-15 1.4e-16 IEEE -30,0 40000 1.5e-15 2.2e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier *************************************************************************)
function Psi(X : Double):Double;

pspline unit

Structures

pspline2interpolant
pspline3interpolant

Subroutines

pspline2arclength
pspline2build
pspline2buildperiodic
pspline2calc
pspline2diff
pspline2diff2
pspline2parametervalues
pspline2tangent
pspline3arclength
pspline3build
pspline3buildperiodic
pspline3calc
pspline3diff
pspline3diff2
pspline3parametervalues
pspline3tangent

pspline2interpolant structure

(************************************************************************* Parametric spline inteprolant: 2-dimensional curve. You should not try to access its members directly - use PSpline2XXXXXXXX() functions instead. *************************************************************************)
PSpline2Interpolant = record N : AlglibInteger; Periodic : Boolean; P : TReal1DArray; X : Spline1DInterpolant; Y : Spline1DInterpolant; end;

pspline3interpolant structure

(************************************************************************* Parametric spline inteprolant: 3-dimensional curve. You should not try to access its members directly - use PSpline3XXXXXXXX() functions instead. *************************************************************************)
PSpline3Interpolant = record N : AlglibInteger; Periodic : Boolean; P : TReal1DArray; X : Spline1DInterpolant; Y : Spline1DInterpolant; Z : Spline1DInterpolant; end;

pspline2arclength subroutine

(************************************************************************* This function calculates arc length, i.e. length of curve between t=a and t=b. INPUT PARAMETERS: P - parametric spline interpolant A,B - parameter values corresponding to arc ends: * B>A will result in positive length returned * B<A will result in negative length returned RESULT: length of arc starting at T=A and ending at T=B. -- ALGLIB PROJECT -- Copyright 30.05.2010 by Bochkanov Sergey *************************************************************************)
function PSpline2ArcLength(const P : PSpline2Interpolant; A : Double; B : Double):Double;

pspline2build subroutine

(************************************************************************* This function builds non-periodic 2-dimensional parametric spline which starts at (X[0],Y[0]) and ends at (X[N-1],Y[N-1]). INPUT PARAMETERS: XY - points, array[0..N-1,0..1]. XY[I,0:1] corresponds to the Ith point. Order of points is important! N - points count, N>=5 for Akima splines, N>=2 for other types of splines. ST - spline type: * 0 Akima spline * 1 parabolically terminated Catmull-Rom spline (Tension=0) * 2 parabolically terminated cubic spline PT - parameterization type: * 0 uniform * 1 chord length * 2 centripetal OUTPUT PARAMETERS: P - parametric spline interpolant NOTES: * this function assumes that there all consequent points are distinct. I.e. (x0,y0)<>(x1,y1), (x1,y1)<>(x2,y2), (x2,y2)<>(x3,y3) and so on. However, non-consequent points may coincide, i.e. we can have (x0,y0)= =(x2,y2). -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline2Build(XY : TReal2DArray; N : AlglibInteger; ST : AlglibInteger; PT : AlglibInteger; var P : PSpline2Interpolant);

pspline2buildperiodic subroutine

(************************************************************************* This function builds periodic 2-dimensional parametric spline which starts at (X[0],Y[0]), goes through all points to (X[N-1],Y[N-1]) and then back to (X[0],Y[0]). INPUT PARAMETERS: XY - points, array[0..N-1,0..1]. XY[I,0:1] corresponds to the Ith point. XY[N-1,0:1] must be different from XY[0,0:1]. Order of points is important! N - points count, N>=3 for other types of splines. ST - spline type: * 1 Catmull-Rom spline (Tension=0) with cyclic boundary conditions * 2 cubic spline with cyclic boundary conditions PT - parameterization type: * 0 uniform * 1 chord length * 2 centripetal OUTPUT PARAMETERS: P - parametric spline interpolant NOTES: * this function assumes that there all consequent points are distinct. I.e. (x0,y0)<>(x1,y1), (x1,y1)<>(x2,y2), (x2,y2)<>(x3,y3) and so on. However, non-consequent points may coincide, i.e. we can have (x0,y0)= =(x2,y2). * last point of sequence is NOT equal to the first point. You shouldn't make curve "explicitly periodic" by making them equal. -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline2BuildPeriodic(XY : TReal2DArray; N : AlglibInteger; ST : AlglibInteger; PT : AlglibInteger; var P : PSpline2Interpolant);

pspline2calc subroutine

(************************************************************************* This function calculates the value of the parametric spline for a given value of parameter T INPUT PARAMETERS: P - parametric spline interpolant T - point: * T in [0,1] corresponds to interval spanned by points * for non-periodic splines T<0 (or T>1) correspond to parts of the curve before the first (after the last) point * for periodic splines T<0 (or T>1) are projected into [0,1] by making T=T-floor(T). OUTPUT PARAMETERS: X - X-position Y - Y-position -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline2Calc(const P : PSpline2Interpolant; T : Double; var X : Double; var Y : Double);

pspline2diff subroutine

(************************************************************************* This function calculates derivative, i.e. it returns (dX/dT,dY/dT). INPUT PARAMETERS: P - parametric spline interpolant T - point: * T in [0,1] corresponds to interval spanned by points * for non-periodic splines T<0 (or T>1) correspond to parts of the curve before the first (after the last) point * for periodic splines T<0 (or T>1) are projected into [0,1] by making T=T-floor(T). OUTPUT PARAMETERS: X - X-value DX - X-derivative Y - Y-value DY - Y-derivative -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline2Diff(const P : PSpline2Interpolant; T : Double; var X : Double; var DX : Double; var Y : Double; var DY : Double);

pspline2diff2 subroutine

(************************************************************************* This function calculates first and second derivative with respect to T. INPUT PARAMETERS: P - parametric spline interpolant T - point: * T in [0,1] corresponds to interval spanned by points * for non-periodic splines T<0 (or T>1) correspond to parts of the curve before the first (after the last) point * for periodic splines T<0 (or T>1) are projected into [0,1] by making T=T-floor(T). OUTPUT PARAMETERS: X - X-value DX - derivative D2X - second derivative Y - Y-value DY - derivative D2Y - second derivative -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline2Diff2(const P : PSpline2Interpolant; T : Double; var X : Double; var DX : Double; var D2X : Double; var Y : Double; var DY : Double; var D2Y : Double);

pspline2parametervalues subroutine

(************************************************************************* This function returns vector of parameter values correspoding to points. I.e. for P created from (X[0],Y[0])...(X[N-1],Y[N-1]) and U=TValues(P) we have (X[0],Y[0]) = PSpline2Calc(P,U[0]), (X[1],Y[1]) = PSpline2Calc(P,U[1]), (X[2],Y[2]) = PSpline2Calc(P,U[2]), ... INPUT PARAMETERS: P - parametric spline interpolant OUTPUT PARAMETERS: N - array size T - array[0..N-1] NOTES: * for non-periodic splines U[0]=0, U[0]<U[1]<...<U[N-1], U[N-1]=1 * for periodic splines U[0]=0, U[0]<U[1]<...<U[N-1], U[N-1]<1 -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline2ParameterValues(const P : PSpline2Interpolant; var N : AlglibInteger; var T : TReal1DArray);

pspline2tangent subroutine

(************************************************************************* This function calculates tangent vector for a given value of parameter T INPUT PARAMETERS: P - parametric spline interpolant T - point: * T in [0,1] corresponds to interval spanned by points * for non-periodic splines T<0 (or T>1) correspond to parts of the curve before the first (after the last) point * for periodic splines T<0 (or T>1) are projected into [0,1] by making T=T-floor(T). OUTPUT PARAMETERS: X - X-component of tangent vector (normalized) Y - Y-component of tangent vector (normalized) NOTE: X^2+Y^2 is either 1 (for non-zero tangent vector) or 0. -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline2Tangent(const P : PSpline2Interpolant; T : Double; var X : Double; var Y : Double);

pspline3arclength subroutine

(************************************************************************* This function calculates arc length, i.e. length of curve between t=a and t=b. INPUT PARAMETERS: P - parametric spline interpolant A,B - parameter values corresponding to arc ends: * B>A will result in positive length returned * B<A will result in negative length returned RESULT: length of arc starting at T=A and ending at T=B. -- ALGLIB PROJECT -- Copyright 30.05.2010 by Bochkanov Sergey *************************************************************************)
function PSpline3ArcLength(const P : PSpline3Interpolant; A : Double; B : Double):Double;

pspline3build subroutine

(************************************************************************* This function builds non-periodic 3-dimensional parametric spline which starts at (X[0],Y[0],Z[0]) and ends at (X[N-1],Y[N-1],Z[N-1]). Same as PSpline2Build() function, but for 3D, so we won't duplicate its description here. -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline3Build(XY : TReal2DArray; N : AlglibInteger; ST : AlglibInteger; PT : AlglibInteger; var P : PSpline3Interpolant);

pspline3buildperiodic subroutine

(************************************************************************* This function builds periodic 3-dimensional parametric spline which starts at (X[0],Y[0],Z[0]), goes through all points to (X[N-1],Y[N-1],Z[N-1]) and then back to (X[0],Y[0],Z[0]). Same as PSpline2Build() function, but for 3D, so we won't duplicate its description here. -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline3BuildPeriodic(XY : TReal2DArray; N : AlglibInteger; ST : AlglibInteger; PT : AlglibInteger; var P : PSpline3Interpolant);

pspline3calc subroutine

(************************************************************************* This function calculates the value of the parametric spline for a given value of parameter T. INPUT PARAMETERS: P - parametric spline interpolant T - point: * T in [0,1] corresponds to interval spanned by points * for non-periodic splines T<0 (or T>1) correspond to parts of the curve before the first (after the last) point * for periodic splines T<0 (or T>1) are projected into [0,1] by making T=T-floor(T). OUTPUT PARAMETERS: X - X-position Y - Y-position Z - Z-position -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline3Calc(const P : PSpline3Interpolant; T : Double; var X : Double; var Y : Double; var Z : Double);

pspline3diff subroutine

(************************************************************************* This function calculates derivative, i.e. it returns (dX/dT,dY/dT,dZ/dT). INPUT PARAMETERS: P - parametric spline interpolant T - point: * T in [0,1] corresponds to interval spanned by points * for non-periodic splines T<0 (or T>1) correspond to parts of the curve before the first (after the last) point * for periodic splines T<0 (or T>1) are projected into [0,1] by making T=T-floor(T). OUTPUT PARAMETERS: X - X-value DX - X-derivative Y - Y-value DY - Y-derivative Z - Z-value DZ - Z-derivative -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline3Diff(const P : PSpline3Interpolant; T : Double; var X : Double; var DX : Double; var Y : Double; var DY : Double; var Z : Double; var DZ : Double);

pspline3diff2 subroutine

(************************************************************************* This function calculates first and second derivative with respect to T. INPUT PARAMETERS: P - parametric spline interpolant T - point: * T in [0,1] corresponds to interval spanned by points * for non-periodic splines T<0 (or T>1) correspond to parts of the curve before the first (after the last) point * for periodic splines T<0 (or T>1) are projected into [0,1] by making T=T-floor(T). OUTPUT PARAMETERS: X - X-value DX - derivative D2X - second derivative Y - Y-value DY - derivative D2Y - second derivative Z - Z-value DZ - derivative D2Z - second derivative -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline3Diff2(const P : PSpline3Interpolant; T : Double; var X : Double; var DX : Double; var D2X : Double; var Y : Double; var DY : Double; var D2Y : Double; var Z : Double; var DZ : Double; var D2Z : Double);

pspline3parametervalues subroutine

(************************************************************************* This function returns vector of parameter values correspoding to points. Same as PSpline2ParameterValues(), but for 3D. -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline3ParameterValues(const P : PSpline3Interpolant; var N : AlglibInteger; var T : TReal1DArray);

pspline3tangent subroutine

(************************************************************************* This function calculates tangent vector for a given value of parameter T INPUT PARAMETERS: P - parametric spline interpolant T - point: * T in [0,1] corresponds to interval spanned by points * for non-periodic splines T<0 (or T>1) correspond to parts of the curve before the first (after the last) point * for periodic splines T<0 (or T>1) are projected into [0,1] by making T=T-floor(T). OUTPUT PARAMETERS: X - X-component of tangent vector (normalized) Y - Y-component of tangent vector (normalized) Z - Z-component of tangent vector (normalized) NOTE: X^2+Y^2+Z^2 is either 1 (for non-zero tangent vector) or 0. -- ALGLIB PROJECT -- Copyright 28.05.2010 by Bochkanov Sergey *************************************************************************)
procedure PSpline3Tangent(const P : PSpline3Interpolant; T : Double; var X : Double; var Y : Double; var Z : Double);

ratint unit

Structures

barycentricfitreport
barycentricinterpolant

Subroutines

barycentricbuildfloaterhormann
barycentricbuildxyw
barycentriccalc
barycentriccopy
barycentricdiff1
barycentricdiff2
barycentricfitfloaterhormann
barycentricfitfloaterhormannwc
barycentriclintransx
barycentriclintransy
barycentricserialize
barycentricunpack
barycentricunserialize

Examples

ratint_fit

barycentricfitreport structure

(************************************************************************* Barycentric fitting report: TaskRCond reciprocal of task's condition number RMSError RMS error AvgError average error AvgRelError average relative error (for non-zero Y[I]) MaxError maximum error *************************************************************************)
BarycentricFitReport = record TaskRCond : Double; DBest : AlglibInteger; RMSError : Double; AvgError : Double; AvgRelError : Double; MaxError : Double; end;

barycentricinterpolant structure

(************************************************************************* Barycentric interpolant. *************************************************************************)
BarycentricInterpolant = record N : AlglibInteger; SY : Double; X : TReal1DArray; Y : TReal1DArray; W : TReal1DArray; end;

barycentricbuildfloaterhormann subroutine

(************************************************************************* Rational interpolant without poles The subroutine constructs the rational interpolating function without real poles (see 'Barycentric rational interpolation with no poles and high rates of approximation', Michael S. Floater. and Kai Hormann, for more information on this subject). Input parameters: X - interpolation nodes, array[0..N-1]. Y - function values, array[0..N-1]. N - number of nodes, N>0. D - order of the interpolation scheme, 0 <= D <= N-1. D<0 will cause an error. D>=N it will be replaced with D=N-1. if you don't know what D to choose, use small value about 3-5. Output parameters: B - barycentric interpolant. Note: this algorithm always succeeds and calculates the weights with close to machine precision. -- ALGLIB PROJECT -- Copyright 17.06.2007 by Bochkanov Sergey *************************************************************************)
procedure BarycentricBuildFloaterHormann(const X : TReal1DArray; const Y : TReal1DArray; N : AlglibInteger; D : AlglibInteger; var B : BarycentricInterpolant);

barycentricbuildxyw subroutine

(************************************************************************* Rational interpolant from X/Y/W arrays F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i])) INPUT PARAMETERS: X - interpolation nodes, array[0..N-1] F - function values, array[0..N-1] W - barycentric weights, array[0..N-1] N - nodes count, N>0 OUTPUT PARAMETERS: B - barycentric interpolant built from (X, Y, W) -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricBuildXYW(const X : TReal1DArray; const Y : TReal1DArray; const W : TReal1DArray; N : AlglibInteger; var B : BarycentricInterpolant);

barycentriccalc subroutine

(************************************************************************* Rational interpolation using barycentric formula F(t) = SUM(i=0,n-1,w[i]*f[i]/(t-x[i])) / SUM(i=0,n-1,w[i]/(t-x[i])) Input parameters: B - barycentric interpolant built with one of model building subroutines. T - interpolation point Result: barycentric interpolant F(t) -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
function BarycentricCalc(const B : BarycentricInterpolant; T : Double):Double;

barycentriccopy subroutine

(************************************************************************* Copying of the barycentric interpolant INPUT PARAMETERS: B - barycentric interpolant OUTPUT PARAMETERS: B2 - copy(B1) -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricCopy(const B : BarycentricInterpolant; var B2 : BarycentricInterpolant);

barycentricdiff1 subroutine

(************************************************************************* Differentiation of barycentric interpolant: first derivative. Algorithm used in this subroutine is very robust and should not fail until provided with values too close to MaxRealNumber (usually MaxRealNumber/N or greater will overflow). INPUT PARAMETERS: B - barycentric interpolant built with one of model building subroutines. T - interpolation point OUTPUT PARAMETERS: F - barycentric interpolant at T DF - first derivative NOTE -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricDiff1(const B : BarycentricInterpolant; T : Double; var F : Double; var DF : Double);

barycentricdiff2 subroutine

(************************************************************************* Differentiation of barycentric interpolant: first/second derivatives. INPUT PARAMETERS: B - barycentric interpolant built with one of model building subroutines. T - interpolation point OUTPUT PARAMETERS: F - barycentric interpolant at T DF - first derivative D2F - second derivative NOTE: this algorithm may fail due to overflow/underflor if used on data whose values are close to MaxRealNumber or MinRealNumber. Use more robust BarycentricDiff1() subroutine in such cases. -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricDiff2(const B : BarycentricInterpolant; T : Double; var F : Double; var DF : Double; var D2F : Double);

barycentricfitfloaterhormann subroutine

(************************************************************************* Rational least squares fitting, without weights and constraints. See BarycentricFitFloaterHormannWC() for more information. -- ALGLIB PROJECT -- Copyright 18.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricFitFloaterHormann(const X : TReal1DArray; const Y : TReal1DArray; N : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var B : BarycentricInterpolant; var Rep : BarycentricFitReport);

Examples:   ratint_fit  

barycentricfitfloaterhormannwc subroutine

(************************************************************************* Weghted rational least squares fitting using Floater-Hormann rational functions with optimal D chosen from [0,9], with constraints and individual weights. Equidistant grid with M node on [min(x),max(x)] is used to build basis functions. Different values of D are tried, optimal D (least WEIGHTED root mean square error) is chosen. Task is linear, so linear least squares solver is used. Complexity of this computational scheme is O(N*M^2) (mostly dominated by the least squares solver). SEE ALSO * BarycentricFitFloaterHormann(), "lightweight" fitting without invididual weights and constraints. INPUT PARAMETERS: X - points, array[0..N-1]. Y - function values, array[0..N-1]. W - weights, array[0..N-1] Each summand in square sum of approximation deviations from given values is multiplied by the square of corresponding weight. Fill it by 1's if you don't want to solve weighted task. N - number of points, N>0. XC - points where function values/derivatives are constrained, array[0..K-1]. YC - values of constraints, array[0..K-1] DC - array[0..K-1], types of constraints: * DC[i]=0 means that S(XC[i])=YC[i] * DC[i]=1 means that S'(XC[i])=YC[i] SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS K - number of constraints, 0<=K<M. K=0 means no constraints (XC/YC/DC are not used in such cases) M - number of basis functions ( = number_of_nodes), M>=2. OUTPUT PARAMETERS: Info- same format as in LSFitLinearWC() subroutine. * Info>0 task is solved * Info<=0 an error occured: -4 means inconvergence of internal SVD -3 means inconsistent constraints -1 means another errors in parameters passed (N<=0, for example) B - barycentric interpolant. Rep - report, same format as in LSFitLinearWC() subroutine. Following fields are set: * DBest best value of the D parameter * RMSError rms error on the (X,Y). * AvgError average error on the (X,Y). * AvgRelError average relative error on the non-zero Y * MaxError maximum error NON-WEIGHTED ERRORS ARE CALCULATED IMPORTANT: this subroitine doesn't calculate task's condition number for K<>0. SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES: Setting constraints can lead to undesired results, like ill-conditioned behavior, or inconsistency being detected. From the other side, it allows us to improve quality of the fit. Here we summarize our experience with constrained barycentric interpolants: * excessive constraints can be inconsistent. Floater-Hormann basis functions aren't as flexible as splines (although they are very smooth). * the more evenly constraints are spread across [min(x),max(x)], the more chances that they will be consistent * the greater is M (given fixed constraints), the more chances that constraints will be consistent * in the general case, consistency of constraints IS NOT GUARANTEED. * in the several special cases, however, we CAN guarantee consistency. * one of this cases is constraints on the function VALUES at the interval boundaries. Note that consustency of the constraints on the function DERIVATIVES is NOT guaranteed (you can use in such cases cubic splines which are more flexible). * another special case is ONE constraint on the function value (OR, but not AND, derivative) anywhere in the interval Our final recommendation is to use constraints WHEN AND ONLY WHEN you can't solve your task without them. Anything beyond special cases given above is not guaranteed and may result in inconsistency. -- ALGLIB PROJECT -- Copyright 18.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricFitFloaterHormannWC(const X : TReal1DArray; const Y : TReal1DArray; const W : TReal1DArray; N : AlglibInteger; const XC : TReal1DArray; const YC : TReal1DArray; const DC : TInteger1DArray; K : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var B : BarycentricInterpolant; var Rep : BarycentricFitReport);

Examples:   ratint_fit  

barycentriclintransx subroutine

(************************************************************************* This subroutine performs linear transformation of the argument. INPUT PARAMETERS: B - rational interpolant in barycentric form CA, CB - transformation coefficients: x = CA*t + CB OUTPUT PARAMETERS: B - transformed interpolant with X replaced by T -- ALGLIB PROJECT -- Copyright 19.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricLinTransX(var B : BarycentricInterpolant; CA : Double; CB : Double);

barycentriclintransy subroutine

(************************************************************************* This subroutine performs linear transformation of the barycentric interpolant. INPUT PARAMETERS: B - rational interpolant in barycentric form CA, CB - transformation coefficients: B2(x) = CA*B(x) + CB OUTPUT PARAMETERS: B - transformed interpolant -- ALGLIB PROJECT -- Copyright 19.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricLinTransY(var B : BarycentricInterpolant; CA : Double; CB : Double);

barycentricserialize subroutine

(************************************************************************* Serialization of the barycentric interpolant INPUT PARAMETERS: B - barycentric interpolant OUTPUT PARAMETERS: RA - array of real numbers which contains interpolant, array[0..RLen-1] RLen - RA lenght -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricSerialize(const B : BarycentricInterpolant; var RA : TReal1DArray; var RALen : AlglibInteger);

barycentricunpack subroutine

(************************************************************************* Extracts X/Y/W arrays from rational interpolant INPUT PARAMETERS: B - barycentric interpolant OUTPUT PARAMETERS: N - nodes count, N>0 X - interpolation nodes, array[0..N-1] F - function values, array[0..N-1] W - barycentric weights, array[0..N-1] -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricUnpack(const B : BarycentricInterpolant; var N : AlglibInteger; var X : TReal1DArray; var Y : TReal1DArray; var W : TReal1DArray);

barycentricunserialize subroutine

(************************************************************************* Unserialization of the barycentric interpolant INPUT PARAMETERS: RA - array of real numbers which contains interpolant, OUTPUT PARAMETERS: B - barycentric interpolant -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure BarycentricUnserialize(const RA : TReal1DArray; var B : BarycentricInterpolant);

ratint_fit example

var
    M : AlglibInteger;
    N : AlglibInteger;
    D : AlglibInteger;
    X : TReal1DArray;
    Y : TReal1DArray;
    W : TReal1DArray;
    XC : TReal1DArray;
    YC : TReal1DArray;
    DC : TInteger1DArray;
    Rep : BarycentricFitReport;
    Info : AlglibInteger;
    R : BarycentricInterpolant;
    I : AlglibInteger;
    J : AlglibInteger;
    A : Double;
    B : Double;
    V : Double;
    DV : Double;
begin
    Write(Format(''#13#10''#13#10'Fitting exp(2*x) at [-1,+1] by:'#13#10'1. constrained/unconstrained Floater-Hormann functions'#13#10'',[]));
    Write(Format(''#13#10'',[]));
    Write(Format('Fit type                rms.err max.err    p(0)   dp(0)  DBest'#13#10'',[]));
    
    //
    // Prepare points
    //
    M := 5;
    A := -1;
    B := +1;
    N := 10000;
    SetLength(X, N);
    SetLength(Y, N);
    SetLength(W, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := A+(B-A)*I/(N-1);
        Y[I] := Exp(2*X[I]);
        W[I] := Double(1.0);
        Inc(I);
    end;
    
    //
    // Fitting:
    // a) f(x)=exp(2*x) at [-1,+1]
    // b) by 5 Floater-Hormann functions
    // c) without constraints
    //
    BarycentricFitFloaterHormann(X, Y, N, M, Info, R, Rep);
    BarycentricDiff1(R, Double(0.0), V, DV);
    Write(Format('Unconstrained FH        %7.4f %7.4f %7.4f %7.4f      %0d'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        V,
        DV,
        Rep.DBest]));
    
    //
    // Fitting:
    // a) f(x)=exp(2*x) at [-1,+1]
    // b) by 5 Floater-Hormann functions
    // c) constrained: p(0)=1
    //
    SetLength(XC, 1);
    SetLength(YC, 1);
    SetLength(DC, 1);
    XC[0] := 0;
    YC[0] := 1;
    DC[0] := 0;
    BarycentricFitFloaterHormannWC(X, Y, W, N, XC, YC, DC, 1, M, Info, R, Rep);
    BarycentricDiff1(R, Double(0.0), V, DV);
    Write(Format('Constrained FH, p(0)=1  %7.4f %7.4f %7.4f %7.4f      %0d'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        V,
        DV,
        Rep.DBest]));
    
    //
    // Fitting:
    // a) f(x)=exp(2*x) at [-1,+1]
    // b) by 5 Floater-Hormann functions
    // c) constrained: dp(0)=2
    //
    SetLength(XC, 1);
    SetLength(YC, 1);
    SetLength(DC, 1);
    XC[0] := 0;
    YC[0] := 2;
    DC[0] := 1;
    BarycentricFitFloaterHormannWC(X, Y, W, N, XC, YC, DC, 1, M, Info, R, Rep);
    BarycentricDiff1(R, Double(0.0), V, DV);
    Write(Format('Constrained FH, dp(0)=2 %7.4f %7.4f %7.4f %7.4f      %0d'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        V,
        DV,
        Rep.DBest]));
    
    //
    // Fitting:
    // a) f(x)=exp(2*x) at [-1,+1]
    // b) by 5 Floater-Hormann functions
    // c) constrained: p(0)=1, dp(0)=2
    //
    SetLength(XC, 2);
    SetLength(YC, 2);
    SetLength(DC, 2);
    XC[0] := 0;
    YC[0] := 1;
    DC[0] := 0;
    XC[1] := 0;
    YC[1] := 2;
    DC[1] := 1;
    BarycentricFitFloaterHormannWC(X, Y, W, N, XC, YC, DC, 2, M, Info, R, Rep);
    BarycentricDiff1(R, Double(0.0), V, DV);
    Write(Format('Constrained FH, both    %7.4f %7.4f %7.4f %7.4f      %0d'#13#10'',[
        Rep.RMSError,
        Rep.MaxError,
        V,
        DV,
        Rep.DBest]));
    Write(Format(''#13#10''#13#10'',[]));
end.

rcond unit

Subroutines

cmatrixlurcond1
cmatrixlurcondinf
cmatrixrcond1
cmatrixrcondinf
cmatrixtrrcond1
cmatrixtrrcondinf
hpdmatrixcholeskyrcond
hpdmatrixrcond
rcondthreshold
rmatrixlurcond1
rmatrixlurcondinf
rmatrixrcond1
rmatrixrcondinf
rmatrixtrrcond1
rmatrixtrrcondinf
spdmatrixcholeskyrcond
spdmatrixrcond

Examples

rcond_1

cmatrixlurcond1 subroutine

(************************************************************************* Estimate of the condition number of a matrix given by its LU decomposition (1-norm) The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: LUA - LU decomposition of a matrix in compact form. Output of the CMatrixLU subroutine. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function CMatrixLURCond1(const LUA : TComplex2DArray; N : AlglibInteger):Double;

Examples:   rcond_1  

cmatrixlurcondinf subroutine

(************************************************************************* Estimate of the condition number of a matrix given by its LU decomposition (infinity norm). The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: LUA - LU decomposition of a matrix in compact form. Output of the CMatrixLU subroutine. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function CMatrixLURCondInf(const LUA : TComplex2DArray; N : AlglibInteger):Double;

Examples:   rcond_1  

cmatrixrcond1 subroutine

(************************************************************************* Estimate of a matrix condition number (1-norm) The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function CMatrixRCond1(A : TComplex2DArray; N : AlglibInteger):Double;

Examples:   rcond_1  

cmatrixrcondinf subroutine

(************************************************************************* Estimate of a matrix condition number (infinity-norm). The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function CMatrixRCondInf(A : TComplex2DArray; N : AlglibInteger):Double;

Examples:   rcond_1  

cmatrixtrrcond1 subroutine

(************************************************************************* Triangular matrix: estimate of a condition number (1-norm) The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: A - matrix. Array[0..N-1, 0..N-1]. N - size of A. IsUpper - True, if the matrix is upper triangular. IsUnit - True, if the matrix has a unit diagonal. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function CMatrixTRRCond1(const A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean):Double;

cmatrixtrrcondinf subroutine

(************************************************************************* Triangular matrix: estimate of a matrix condition number (infinity-norm). The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - True, if the matrix is upper triangular. IsUnit - True, if the matrix has a unit diagonal. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function CMatrixTRRCondInf(const A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean):Double;

hpdmatrixcholeskyrcond subroutine

(************************************************************************* Condition number estimate of a Hermitian positive definite matrix given by Cholesky decomposition. The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). It should be noted that 1-norm and inf-norm condition numbers of symmetric matrices are equal, so the algorithm doesn't take into account the differences between these types of norms. Input parameters: CD - Cholesky decomposition of matrix A, output of SMatrixCholesky subroutine. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function HPDMatrixCholeskyRCond(const A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean):Double;

Examples:   rcond_1  

hpdmatrixrcond subroutine

(************************************************************************* Condition number estimate of a Hermitian positive definite matrix. The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). It should be noted that 1-norm and inf-norm of condition numbers of symmetric matrices are equal, so the algorithm doesn't take into account the differences between these types of norms. Input parameters: A - Hermitian positive definite matrix which is given by its upper or lower triangle depending on the value of IsUpper. Array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - storage format. Result: 1/LowerBound(cond(A)), if matrix A is positive definite, -1, if matrix A is not positive definite, and its condition number could not be found by this algorithm. NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function HPDMatrixRCond(A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean):Double;

Examples:   rcond_1  

rcondthreshold subroutine

(************************************************************************* Threshold for rcond: matrices with condition number beyond this threshold are considered singular. Threshold must be far enough from underflow, at least Sqr(Threshold) must be greater than underflow. *************************************************************************)
function RCondThreshold():Double;

rmatrixlurcond1 subroutine

(************************************************************************* Estimate of the condition number of a matrix given by its LU decomposition (1-norm) The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: LUA - LU decomposition of a matrix in compact form. Output of the RMatrixLU subroutine. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function RMatrixLURCond1(const LUA : TReal2DArray; N : AlglibInteger):Double;

Examples:   rcond_1  

rmatrixlurcondinf subroutine

(************************************************************************* Estimate of the condition number of a matrix given by its LU decomposition (infinity norm). The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: LUA - LU decomposition of a matrix in compact form. Output of the RMatrixLU subroutine. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function RMatrixLURCondInf(const LUA : TReal2DArray; N : AlglibInteger):Double;

Examples:   rcond_1  

rmatrixrcond1 subroutine

(************************************************************************* Estimate of a matrix condition number (1-norm) The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function RMatrixRCond1(A : TReal2DArray; N : AlglibInteger):Double;

Examples:   rcond_1  

rmatrixrcondinf subroutine

(************************************************************************* Estimate of a matrix condition number (infinity-norm). The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function RMatrixRCondInf(A : TReal2DArray; N : AlglibInteger):Double;

Examples:   rcond_1  

rmatrixtrrcond1 subroutine

(************************************************************************* Triangular matrix: estimate of a condition number (1-norm) The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: A - matrix. Array[0..N-1, 0..N-1]. N - size of A. IsUpper - True, if the matrix is upper triangular. IsUnit - True, if the matrix has a unit diagonal. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function RMatrixTRRCond1(const A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean):Double;

rmatrixtrrcondinf subroutine

(************************************************************************* Triangular matrix: estimate of a matrix condition number (infinity-norm). The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). Input parameters: A - matrix. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - True, if the matrix is upper triangular. IsUnit - True, if the matrix has a unit diagonal. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function RMatrixTRRCondInf(const A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean; IsUnit : Boolean):Double;

spdmatrixcholeskyrcond subroutine

(************************************************************************* Condition number estimate of a symmetric positive definite matrix given by Cholesky decomposition. The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). It should be noted that 1-norm and inf-norm condition numbers of symmetric matrices are equal, so the algorithm doesn't take into account the differences between these types of norms. Input parameters: CD - Cholesky decomposition of matrix A, output of SMatrixCholesky subroutine. N - size of matrix A. Result: 1/LowerBound(cond(A)) NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function SPDMatrixCholeskyRCond(const A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean):Double;

Examples:   rcond_1  

spdmatrixrcond subroutine

(************************************************************************* Condition number estimate of a symmetric positive definite matrix. The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). It should be noted that 1-norm and inf-norm of condition numbers of symmetric matrices are equal, so the algorithm doesn't take into account the differences between these types of norms. Input parameters: A - symmetric positive definite matrix which is given by its upper or lower triangle depending on the value of IsUpper. Array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - storage format. Result: 1/LowerBound(cond(A)), if matrix A is positive definite, -1, if matrix A is not positive definite, and its condition number could not be found by this algorithm. NOTE: if k(A) is very large, then matrix is assumed degenerate, k(A)=INF, 0.0 is returned in such cases. *************************************************************************)
function SPDMatrixRCond(A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean):Double;

Examples:   rcond_1  

rcond_1 example

var
    N : AlglibInteger;
    I : AlglibInteger;
    J : AlglibInteger;
    C1 : Double;
    X : Double;
    A : TReal2DArray;
begin
    Write(Format('                 CONDITION NUMBERS'#13#10'',[]));
    Write(Format('OF VANDERMONDE AND CHEBYSHEV INTERPOLATION MATRICES'#13#10''#13#10'',[]));
    Write(Format('    VANDERMONDE   CHEBYSHEV'#13#10'',[]));
    Write(Format('  N      1-norm      1-norm'#13#10'',[]));
    N:=2;
    while N<=14 do
    begin
        SetLength(A, N, N);
        Write(Format('%3d',[
            N]));
        
        //
        // Vandermone matrix
        //
        I:=0;
        while I<=N-1 do
        begin
            X := AP_Double(2*I)/(N-1)-1;
            A[I,0] := 1;
            J:=1;
            while J<=N-1 do
            begin
                A[I,J] := A[I,J-1]*X;
                Inc(J);
            end;
            Inc(I);
        end;
        C1 := 1/RMatrixRCond1(A, N);
        Write(Format(' %11.1f',[
            C1]));
        
        //
        // Chebyshev interpolation matrix
        //
        I:=0;
        while I<=N-1 do
        begin
            X := AP_Double(2*I)/(N-1)-1;
            A[I,0] := 1;
            if N>=2 then
            begin
                A[I,1] := X;
            end;
            J:=2;
            while J<=N-1 do
            begin
                A[I,J] := 2*X*A[I,J-1]-A[I,J-2];
                Inc(J);
            end;
            Inc(I);
        end;
        C1 := 1/RMatrixRCond1(A, N);
        Write(Format(' %11.1f'#13#10'',[
            C1]));
        Inc(N);
    end;
end.

schur unit

Subroutines

rmatrixschur

rmatrixschur subroutine

(************************************************************************* Subroutine performing the Schur decomposition of a general matrix by using the QR algorithm with multiple shifts. The source matrix A is represented as S'*A*S = T, where S is an orthogonal matrix (Schur vectors), T - upper quasi-triangular matrix (with blocks of sizes 1x1 and 2x2 on the main diagonal). Input parameters: A - matrix to be decomposed. Array whose indexes range within [0..N-1, 0..N-1]. N - size of A, N>=0. Output parameters: A - contains matrix T. Array whose indexes range within [0..N-1, 0..N-1]. S - contains Schur vectors. Array whose indexes range within [0..N-1, 0..N-1]. Note 1: The block structure of matrix T can be easily recognized: since all the elements below the blocks are zeros, the elements a[i+1,i] which are equal to 0 show the block border. Note 2: The algorithm performance depends on the value of the internal parameter NS of the InternalSchurDecomposition subroutine which defines the number of shifts in the QR algorithm (similarly to the block width in block-matrix algorithms in linear algebra). If you require maximum performance on your machine, it is recommended to adjust this parameter manually. Result: True, if the algorithm has converged and parameters A and S contain the result. False, if the algorithm has not converged. Algorithm implemented on the basis of the DHSEQR subroutine (LAPACK 3.0 library). *************************************************************************)
function RMatrixSchur(var A : TReal2DArray; N : AlglibInteger; var S : TReal2DArray):Boolean;

sdet unit

Subroutines

smatrixdet
smatrixldltdet

smatrixdet subroutine

(************************************************************************* Determinant calculation of the symmetric matrix Input parameters: A - matrix. Array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - if IsUpper = True, then symmetric matrix A is given by its upper triangle, and the lower triangle isn’t used by subroutine. Similarly, if IsUpper = False, then A is given by its lower triangle. Result: determinant of matrix A. -- ALGLIB -- Copyright 2005-2008 by Bochkanov Sergey *************************************************************************)
function SMatrixDet(A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean):Double;

smatrixldltdet subroutine

(************************************************************************* Determinant calculation of the matrix given by LDLT decomposition. Input parameters: A - LDLT-decomposition of the matrix, output of subroutine SMatrixLDLT. Pivots - table of permutations which were made during LDLT decomposition, output of subroutine SMatrixLDLT. N - size of matrix A. IsUpper - matrix storage format. The value is equal to the input parameter of subroutine SMatrixLDLT. Result: matrix determinant. -- ALGLIB -- Copyright 2005-2008 by Bochkanov Sergey *************************************************************************)
function SMatrixLDLTDet(const A : TReal2DArray; const Pivots : TInteger1DArray; N : AlglibInteger; IsUpper : Boolean):Double;

sinverse unit

Subroutines

smatrixinverse
smatrixldltinverse

smatrixinverse subroutine

(************************************************************************* Inversion of a symmetric indefinite matrix Given a lower or upper triangle of matrix A, the algorithm generates matrix A^-1 and saves the lower or upper triangle depending on the input. Input parameters: A - matrix to be inverted (upper or lower triangle). Array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - storage format. If IsUpper = True, then the upper triangle of matrix A is given, otherwise the lower triangle is given. Output parameters: A - inverse of matrix A. Array with elements [0..N-1, 0..N-1]. If IsUpper = True, then A contains the upper triangle of matrix A^-1, and the elements below the main diagonal are not used nor changed. The same applies if IsUpper = False. Result: True, if the matrix is not singular. False, if the matrix is singular and could not be inverted. -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 *************************************************************************)
function SMatrixInverse(var A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean):Boolean;

smatrixldltinverse subroutine

(************************************************************************* Inversion of a symmetric indefinite matrix The algorithm gets an LDLT-decomposition as an input, generates matrix A^-1 and saves the lower or upper triangle of an inverse matrix depending on the input (U*D*U' or L*D*L'). Input parameters: A - LDLT-decomposition of the matrix, Output of subroutine SMatrixLDLT. N - size of matrix A. IsUpper - storage format. If IsUpper = True, then the symmetric matrix is given as decomposition A = U*D*U' and this decomposition is stored in the upper triangle of matrix A and on the main diagonal, and the lower triangle of matrix A is not used. Pivots - a table of permutations, output of subroutine SMatrixLDLT. Output parameters: A - inverse of the matrix, whose LDLT-decomposition was stored in matrix A as a subroutine input. Array with elements [0..N-1, 0..N-1]. If IsUpper = True, then A contains the upper triangle of matrix A^-1, and the elements below the main diagonal are not used nor changed. The same applies if IsUpper = False. Result: True, if the matrix is not singular. False, if the matrix is singular and could not be inverted. -- LAPACK routine (version 3.0) -- Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd., Courant Institute, Argonne National Lab, and Rice University March 31, 1993 *************************************************************************)
function SMatrixLDLTInverse(var A : TReal2DArray; const Pivots : TInteger1DArray; N : AlglibInteger; IsUpper : Boolean):Boolean;

spdgevd unit

Subroutines

smatrixgevd
smatrixgevdreduce

smatrixgevd subroutine

(************************************************************************* Algorithm for solving the following generalized symmetric positive-definite eigenproblem: A*x = lambda*B*x (1) or A*B*x = lambda*x (2) or B*A*x = lambda*x (3). where A is a symmetric matrix, B - symmetric positive-definite matrix. The problem is solved by reducing it to an ordinary symmetric eigenvalue problem. Input parameters: A - symmetric matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrices A and B. IsUpperA - storage format of matrix A. B - symmetric positive-definite matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. IsUpperB - storage format of matrix B. ZNeeded - if ZNeeded is equal to: * 0, the eigenvectors are not returned; * 1, the eigenvectors are returned. ProblemType - if ProblemType is equal to: * 1, the following problem is solved: A*x = lambda*B*x; * 2, the following problem is solved: A*B*x = lambda*x; * 3, the following problem is solved: B*A*x = lambda*x. Output parameters: D - eigenvalues in ascending order. Array whose index ranges within [0..N-1]. Z - if ZNeeded is equal to: * 0, Z hasn’t changed; * 1, Z contains eigenvectors. Array whose indexes range within [0..N-1, 0..N-1]. The eigenvectors are stored in matrix columns. It should be noted that the eigenvectors in such problems do not form an orthogonal system. Result: True, if the problem was solved successfully. False, if the error occurred during the Cholesky decomposition of matrix B (the matrix isn’t positive-definite) or during the work of the iterative algorithm for solving the symmetric eigenproblem. See also the GeneralizedSymmetricDefiniteEVDReduce subroutine. -- ALGLIB -- Copyright 1.28.2006 by Bochkanov Sergey *************************************************************************)
function SMatrixGEVD(A : TReal2DArray; N : AlglibInteger; IsUpperA : Boolean; const B : TReal2DArray; IsUpperB : Boolean; ZNeeded : AlglibInteger; ProblemType : AlglibInteger; var D : TReal1DArray; var Z : TReal2DArray):Boolean;

smatrixgevdreduce subroutine

(************************************************************************* Algorithm for reduction of the following generalized symmetric positive- definite eigenvalue problem: A*x = lambda*B*x (1) or A*B*x = lambda*x (2) or B*A*x = lambda*x (3) to the symmetric eigenvalues problem C*y = lambda*y (eigenvalues of this and the given problems are the same, and the eigenvectors of the given problem could be obtained by multiplying the obtained eigenvectors by the transformation matrix x = R*y). Here A is a symmetric matrix, B - symmetric positive-definite matrix. Input parameters: A - symmetric matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. N - size of matrices A and B. IsUpperA - storage format of matrix A. B - symmetric positive-definite matrix which is given by its upper or lower triangular part. Array whose indexes range within [0..N-1, 0..N-1]. IsUpperB - storage format of matrix B. ProblemType - if ProblemType is equal to: * 1, the following problem is solved: A*x = lambda*B*x; * 2, the following problem is solved: A*B*x = lambda*x; * 3, the following problem is solved: B*A*x = lambda*x. Output parameters: A - symmetric matrix which is given by its upper or lower triangle depending on IsUpperA. Contains matrix C. Array whose indexes range within [0..N-1, 0..N-1]. R - upper triangular or low triangular transformation matrix which is used to obtain the eigenvectors of a given problem as the product of eigenvectors of C (from the right) and matrix R (from the left). If the matrix is upper triangular, the elements below the main diagonal are equal to 0 (and vice versa). Thus, we can perform the multiplication without taking into account the internal structure (which is an easier though less effective way). Array whose indexes range within [0..N-1, 0..N-1]. IsUpperR - type of matrix R (upper or lower triangular). Result: True, if the problem was reduced successfully. False, if the error occurred during the Cholesky decomposition of matrix B (the matrix is not positive-definite). -- ALGLIB -- Copyright 1.28.2006 by Bochkanov Sergey *************************************************************************)
function SMatrixGEVDReduce(var A : TReal2DArray; N : AlglibInteger; IsUpperA : Boolean; const B : TReal2DArray; IsUpperB : Boolean; ProblemType : AlglibInteger; var R : TReal2DArray; var IsUpperR : Boolean):Boolean;

spline1d unit

Structures

spline1dfitreport
spline1dinterpolant

Subroutines

spline1dbuildakima
spline1dbuildcatmullrom
spline1dbuildcubic
spline1dbuildhermite
spline1dbuildlinear
spline1dcalc
spline1dcopy
spline1ddiff
spline1dfitcubic
spline1dfitcubicwc
spline1dfithermite
spline1dfithermitewc
spline1dintegrate
spline1dlintransx
spline1dlintransy
spline1dunpack

Examples

spline1d_calc
spline1d_cubic
spline1d_fit
spline1d_fitc
spline1d_hermite
spline1d_linear

spline1dfitreport structure

(************************************************************************* Spline fitting report: TaskRCond reciprocal of task's condition number RMSError RMS error AvgError average error AvgRelError average relative error (for non-zero Y[I]) MaxError maximum error *************************************************************************)
Spline1DFitReport = record TaskRCond : Double; RMSError : Double; AvgError : Double; AvgRelError : Double; MaxError : Double; end;

spline1dinterpolant structure

(************************************************************************* 1-dimensional spline inteprolant *************************************************************************)
Spline1DInterpolant = record Periodic : Boolean; N : AlglibInteger; K : AlglibInteger; X : TReal1DArray; C : TReal1DArray; end;

spline1dbuildakima subroutine

(************************************************************************* This subroutine builds Akima spline interpolant INPUT PARAMETERS: X - spline nodes, array[0..N-1] Y - function values, array[0..N-1] N - points count, N>=5 OUTPUT PARAMETERS: C - spline interpolant ORDER OF POINTS Subroutine automatically sorts points, so caller may pass unsorted array. -- ALGLIB PROJECT -- Copyright 24.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DBuildAkima(X : TReal1DArray; Y : TReal1DArray; N : AlglibInteger; var C : Spline1DInterpolant);

spline1dbuildcatmullrom subroutine

(************************************************************************* This subroutine builds Catmull-Rom spline interpolant. INPUT PARAMETERS: X - spline nodes, array[0..N-1]. Y - function values, array[0..N-1]. N - points count, N>=2 BoundType - boundary condition type: * -1 for periodic boundary condition * 0 for parabolically terminated spline Tension - tension parameter: * tension=0 corresponds to classic Catmull-Rom spline * 0<tension<1 corresponds to more general form - cardinal spline OUTPUT PARAMETERS: C - spline interpolant ORDER OF POINTS Subroutine automatically sorts points, so caller may pass unsorted array. PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS: Problems with periodic boundary conditions have Y[first_point]=Y[last_point]. However, this subroutine doesn't require you to specify equal values for the first and last points - it automatically forces them to be equal. -- ALGLIB PROJECT -- Copyright 23.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DBuildCatmullRom(X : TReal1DArray; Y : TReal1DArray; N : AlglibInteger; BoundType : AlglibInteger; Tension : Double; var C : Spline1DInterpolant);

spline1dbuildcubic subroutine

(************************************************************************* This subroutine builds cubic spline interpolant. INPUT PARAMETERS: X - spline nodes, array[0..N-1]. Y - function values, array[0..N-1]. N - points count, N>=2 BoundLType - boundary condition type for the left boundary BoundL - left boundary condition (first or second derivative, depending on the BoundLType) BoundRType - boundary condition type for the right boundary BoundR - right boundary condition (first or second derivative, depending on the BoundRType) OUTPUT PARAMETERS: C - spline interpolant ORDER OF POINTS Subroutine automatically sorts points, so caller may pass unsorted array. SETTING BOUNDARY VALUES: The BoundLType/BoundRType parameters can have the following values: * -1, which corresonds to the periodic (cyclic) boundary conditions. In this case: * both BoundLType and BoundRType must be equal to -1. * BoundL/BoundR are ignored * Y[last] is ignored (it is assumed to be equal to Y[first]). * 0, which corresponds to the parabolically terminated spline (BoundL and/or BoundR are ignored). * 1, which corresponds to the first derivative boundary condition * 2, which corresponds to the second derivative boundary condition PROBLEMS WITH PERIODIC BOUNDARY CONDITIONS: Problems with periodic boundary conditions have Y[first_point]=Y[last_point]. However, this subroutine doesn't require you to specify equal values for the first and last points - it automatically forces them to be equal. -- ALGLIB PROJECT -- Copyright 23.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DBuildCubic(X : TReal1DArray; Y : TReal1DArray; N : AlglibInteger; BoundLType : AlglibInteger; BoundL : Double; BoundRType : AlglibInteger; BoundR : Double; var C : Spline1DInterpolant);

Examples:   spline1d_calc  spline1d_cubic  

spline1dbuildhermite subroutine

(************************************************************************* This subroutine builds Hermite spline interpolant. INPUT PARAMETERS: X - spline nodes, array[0..N-1] Y - function values, array[0..N-1] D - derivatives, array[0..N-1] N - points count, N>=2 OUTPUT PARAMETERS: C - spline interpolant. ORDER OF POINTS Subroutine automatically sorts points, so caller may pass unsorted array. -- ALGLIB PROJECT -- Copyright 23.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DBuildHermite(X : TReal1DArray; Y : TReal1DArray; D : TReal1DArray; N : AlglibInteger; var C : Spline1DInterpolant);

Examples:   spline1d_hermite  

spline1dbuildlinear subroutine

(************************************************************************* This subroutine builds linear spline interpolant INPUT PARAMETERS: X - spline nodes, array[0..N-1] Y - function values, array[0..N-1] N - points count, N>=2 OUTPUT PARAMETERS: C - spline interpolant ORDER OF POINTS Subroutine automatically sorts points, so caller may pass unsorted array. -- ALGLIB PROJECT -- Copyright 24.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DBuildLinear(X : TReal1DArray; Y : TReal1DArray; N : AlglibInteger; var C : Spline1DInterpolant);

Examples:   spline1d_linear  

spline1dcalc subroutine

(************************************************************************* This subroutine calculates the value of the spline at the given point X. INPUT PARAMETERS: C - spline interpolant X - point Result: S(x) -- ALGLIB PROJECT -- Copyright 23.06.2007 by Bochkanov Sergey *************************************************************************)
function Spline1DCalc(const C : Spline1DInterpolant; X : Double):Double;

Examples:   spline1d_calc  spline1d_cubic  spline1d_hermite  spline1d_linear  

spline1dcopy subroutine

(************************************************************************* This subroutine makes the copy of the spline. INPUT PARAMETERS: C - spline interpolant. Result: CC - spline copy -- ALGLIB PROJECT -- Copyright 29.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DCopy(const C : Spline1DInterpolant; var CC : Spline1DInterpolant);

spline1ddiff subroutine

(************************************************************************* This subroutine differentiates the spline. INPUT PARAMETERS: C - spline interpolant. X - point Result: S - S(x) DS - S'(x) D2S - S''(x) -- ALGLIB PROJECT -- Copyright 24.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DDiff(const C : Spline1DInterpolant; X : Double; var S : Double; var DS : Double; var D2S : Double);

Examples:   spline1d_calc  

spline1dfitcubic subroutine

(************************************************************************* Least squares fitting by cubic spline. This subroutine is "lightweight" alternative for more complex and feature- rich Spline1DFitCubicWC(). See Spline1DFitCubicWC() for more information about subroutine parameters (we don't duplicate it here because of length) -- ALGLIB PROJECT -- Copyright 18.08.2009 by Bochkanov Sergey *************************************************************************)
procedure Spline1DFitCubic(const X : TReal1DArray; const Y : TReal1DArray; N : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var S : Spline1DInterpolant; var Rep : Spline1DFitReport);

Examples:   spline1d_fit  

spline1dfitcubicwc subroutine

(************************************************************************* Weighted fitting by cubic spline, with constraints on function values or derivatives. Equidistant grid with M-2 nodes on [min(x,xc),max(x,xc)] is used to build basis functions. Basis functions are cubic splines with continuous second derivatives and non-fixed first derivatives at interval ends. Small regularizing term is used when solving constrained tasks (to improve stability). Task is linear, so linear least squares solver is used. Complexity of this computational scheme is O(N*M^2), mostly dominated by least squares solver SEE ALSO Spline1DFitHermiteWC() - fitting by Hermite splines (more flexible, less smooth) Spline1DFitCubic() - "lightweight" fitting by cubic splines, without invididual weights and constraints INPUT PARAMETERS: X - points, array[0..N-1]. Y - function values, array[0..N-1]. W - weights, array[0..N-1] Each summand in square sum of approximation deviations from given values is multiplied by the square of corresponding weight. Fill it by 1's if you don't want to solve weighted task. N - number of points, N>0. XC - points where spline values/derivatives are constrained, array[0..K-1]. YC - values of constraints, array[0..K-1] DC - array[0..K-1], types of constraints: * DC[i]=0 means that S(XC[i])=YC[i] * DC[i]=1 means that S'(XC[i])=YC[i] SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS K - number of constraints, 0<=K<M. K=0 means no constraints (XC/YC/DC are not used in such cases) M - number of basis functions ( = number_of_nodes+2), M>=4. OUTPUT PARAMETERS: Info- same format as in LSFitLinearWC() subroutine. * Info>0 task is solved * Info<=0 an error occured: -4 means inconvergence of internal SVD -3 means inconsistent constraints -1 means another errors in parameters passed (N<=0, for example) S - spline interpolant. Rep - report, same format as in LSFitLinearWC() subroutine. Following fields are set: * RMSError rms error on the (X,Y). * AvgError average error on the (X,Y). * AvgRelError average relative error on the non-zero Y * MaxError maximum error NON-WEIGHTED ERRORS ARE CALCULATED IMPORTANT: this subroitine doesn't calculate task's condition number for K<>0. ORDER OF POINTS Subroutine automatically sorts points, so caller may pass unsorted array. SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES: Setting constraints can lead to undesired results, like ill-conditioned behavior, or inconsistency being detected. From the other side, it allows us to improve quality of the fit. Here we summarize our experience with constrained regression splines: * excessive constraints can be inconsistent. Splines are piecewise cubic functions, and it is easy to create an example, where large number of constraints concentrated in small area will result in inconsistency. Just because spline is not flexible enough to satisfy all of them. And same constraints spread across the [min(x),max(x)] will be perfectly consistent. * the more evenly constraints are spread across [min(x),max(x)], the more chances that they will be consistent * the greater is M (given fixed constraints), the more chances that constraints will be consistent * in the general case, consistency of constraints IS NOT GUARANTEED. * in the several special cases, however, we CAN guarantee consistency. * one of this cases is constraints on the function values AND/OR its derivatives at the interval boundaries. * another special case is ONE constraint on the function value (OR, but not AND, derivative) anywhere in the interval Our final recommendation is to use constraints WHEN AND ONLY WHEN you can't solve your task without them. Anything beyond special cases given above is not guaranteed and may result in inconsistency. -- ALGLIB PROJECT -- Copyright 18.08.2009 by Bochkanov Sergey *************************************************************************)
procedure Spline1DFitCubicWC(const X : TReal1DArray; const Y : TReal1DArray; const W : TReal1DArray; N : AlglibInteger; const XC : TReal1DArray; const YC : TReal1DArray; const DC : TInteger1DArray; K : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var S : Spline1DInterpolant; var Rep : Spline1DFitReport);

Examples:   spline1d_fitc  

spline1dfithermite subroutine

(************************************************************************* Least squares fitting by Hermite spline. This subroutine is "lightweight" alternative for more complex and feature- rich Spline1DFitHermiteWC(). See Spline1DFitHermiteWC() description for more information about subroutine parameters (we don't duplicate it here because of length). -- ALGLIB PROJECT -- Copyright 18.08.2009 by Bochkanov Sergey *************************************************************************)
procedure Spline1DFitHermite(const X : TReal1DArray; const Y : TReal1DArray; N : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var S : Spline1DInterpolant; var Rep : Spline1DFitReport);

Examples:   spline1d_fit  

spline1dfithermitewc subroutine

(************************************************************************* Weighted fitting by Hermite spline, with constraints on function values or first derivatives. Equidistant grid with M nodes on [min(x,xc),max(x,xc)] is used to build basis functions. Basis functions are Hermite splines. Small regularizing term is used when solving constrained tasks (to improve stability). Task is linear, so linear least squares solver is used. Complexity of this computational scheme is O(N*M^2), mostly dominated by least squares solver SEE ALSO Spline1DFitCubicWC() - fitting by Cubic splines (less flexible, more smooth) Spline1DFitHermite() - "lightweight" Hermite fitting, without invididual weights and constraints INPUT PARAMETERS: X - points, array[0..N-1]. Y - function values, array[0..N-1]. W - weights, array[0..N-1] Each summand in square sum of approximation deviations from given values is multiplied by the square of corresponding weight. Fill it by 1's if you don't want to solve weighted task. N - number of points, N>0. XC - points where spline values/derivatives are constrained, array[0..K-1]. YC - values of constraints, array[0..K-1] DC - array[0..K-1], types of constraints: * DC[i]=0 means that S(XC[i])=YC[i] * DC[i]=1 means that S'(XC[i])=YC[i] SEE BELOW FOR IMPORTANT INFORMATION ON CONSTRAINTS K - number of constraints, 0<=K<M. K=0 means no constraints (XC/YC/DC are not used in such cases) M - number of basis functions (= 2 * number of nodes), M>=4, M IS EVEN! OUTPUT PARAMETERS: Info- same format as in LSFitLinearW() subroutine: * Info>0 task is solved * Info<=0 an error occured: -4 means inconvergence of internal SVD -3 means inconsistent constraints -2 means odd M was passed (which is not supported) -1 means another errors in parameters passed (N<=0, for example) S - spline interpolant. Rep - report, same format as in LSFitLinearW() subroutine. Following fields are set: * RMSError rms error on the (X,Y). * AvgError average error on the (X,Y). * AvgRelError average relative error on the non-zero Y * MaxError maximum error NON-WEIGHTED ERRORS ARE CALCULATED IMPORTANT: this subroitine doesn't calculate task's condition number for K<>0. IMPORTANT: this subroitine supports only even M's ORDER OF POINTS Subroutine automatically sorts points, so caller may pass unsorted array. SETTING CONSTRAINTS - DANGERS AND OPPORTUNITIES: Setting constraints can lead to undesired results, like ill-conditioned behavior, or inconsistency being detected. From the other side, it allows us to improve quality of the fit. Here we summarize our experience with constrained regression splines: * excessive constraints can be inconsistent. Splines are piecewise cubic functions, and it is easy to create an example, where large number of constraints concentrated in small area will result in inconsistency. Just because spline is not flexible enough to satisfy all of them. And same constraints spread across the [min(x),max(x)] will be perfectly consistent. * the more evenly constraints are spread across [min(x),max(x)], the more chances that they will be consistent * the greater is M (given fixed constraints), the more chances that constraints will be consistent * in the general case, consistency of constraints is NOT GUARANTEED. * in the several special cases, however, we can guarantee consistency. * one of this cases is M>=4 and constraints on the function value (AND/OR its derivative) at the interval boundaries. * another special case is M>=4 and ONE constraint on the function value (OR, BUT NOT AND, derivative) anywhere in [min(x),max(x)] Our final recommendation is to use constraints WHEN AND ONLY when you can't solve your task without them. Anything beyond special cases given above is not guaranteed and may result in inconsistency. -- ALGLIB PROJECT -- Copyright 18.08.2009 by Bochkanov Sergey *************************************************************************)
procedure Spline1DFitHermiteWC(const X : TReal1DArray; const Y : TReal1DArray; const W : TReal1DArray; N : AlglibInteger; const XC : TReal1DArray; const YC : TReal1DArray; const DC : TInteger1DArray; K : AlglibInteger; M : AlglibInteger; var Info : AlglibInteger; var S : Spline1DInterpolant; var Rep : Spline1DFitReport);

Examples:   spline1d_fitc  

spline1dintegrate subroutine

(************************************************************************* This subroutine integrates the spline. INPUT PARAMETERS: C - spline interpolant. X - right bound of the integration interval [a, x], here 'a' denotes min(x[]) Result: integral(S(t)dt,a,x) -- ALGLIB PROJECT -- Copyright 23.06.2007 by Bochkanov Sergey *************************************************************************)
function Spline1DIntegrate(const C : Spline1DInterpolant; X : Double):Double;

Examples:   spline1d_calc  

spline1dlintransx subroutine

(************************************************************************* This subroutine performs linear transformation of the spline argument. INPUT PARAMETERS: C - spline interpolant. A, B- transformation coefficients: x = A*t + B Result: C - transformed spline -- ALGLIB PROJECT -- Copyright 30.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DLinTransX(var C : Spline1DInterpolant; A : Double; B : Double);

spline1dlintransy subroutine

(************************************************************************* This subroutine performs linear transformation of the spline. INPUT PARAMETERS: C - spline interpolant. A, B- transformation coefficients: S2(x) = A*S(x) + B Result: C - transformed spline -- ALGLIB PROJECT -- Copyright 30.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DLinTransY(var C : Spline1DInterpolant; A : Double; B : Double);

spline1dunpack subroutine

(************************************************************************* This subroutine unpacks the spline into the coefficients table. INPUT PARAMETERS: C - spline interpolant. X - point Result: Tbl - coefficients table, unpacked format, array[0..N-2, 0..5]. For I = 0...N-2: Tbl[I,0] = X[i] Tbl[I,1] = X[i+1] Tbl[I,2] = C0 Tbl[I,3] = C1 Tbl[I,4] = C2 Tbl[I,5] = C3 On [x[i], x[i+1]] spline is equals to: S(x) = C0 + C1*t + C2*t^2 + C3*t^3 t = x-x[i] -- ALGLIB PROJECT -- Copyright 29.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline1DUnpack(const C : Spline1DInterpolant; var N : AlglibInteger; var Tbl : TReal2DArray);

spline1d_calc example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    T : Double;
    S : Spline1DInterpolant;
    V : Double;
    DV : Double;
    D2V : Double;
    Err : Double;
    MaxErr : Double;
begin
    
    //
    // Demonstration of Spline1DCalc(), Spline1DDiff(), Spline1DIntegrate()
    //
    Write(Format('DEMONSTRATION OF Spline1DCalc(), Spline1DDiff(), Spline1DIntegrate()'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x), [0, pi]'#13#10'',[]));
    Write(Format('Natural cubic spline with 3 nodes is used'#13#10''#13#10'',[]));
    
    //
    // Create spline
    //
    N := 3;
    SetLength(X, N);
    SetLength(Y, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := Pi*I/(N-1);
        Y[I] := Sin(X[I]);
        Inc(I);
    end;
    Spline1DBuildCubic(X, Y, N, 2, Double(0.0), 2, Double(0.0), S);
    
    //
    // Output results
    //
    Spline1DDiff(S, 0, V, DV, D2V);
    Write(Format('                 S(x)    F(x) '#13#10'',[]));
    Write(Format('function       %6.3f  %6.3f '#13#10'',[
        Spline1DCalc(S, 0),
        Double(Variant(0))]));
    Write(Format('d/dx(0)        %6.3f  %6.3f '#13#10'',[
        DV,
        Double(Variant(1))]));
    Write(Format('d2/dx2(0)      %6.3f  %6.3f '#13#10'',[
        D2V,
        Double(Variant(0))]));
    Write(Format('integral(0,pi) %6.3f  %6.3f '#13#10'',[
        Spline1DIntegrate(S, Pi),
        Double(Variant(2))]));
    Write(Format(''#13#10''#13#10'',[]));
end.

spline1d_cubic example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    T : Double;
    S : Spline1DInterpolant;
    Err : Double;
    MaxErr : Double;
begin
    
    //
    // Interpolation by natural Cubic spline.
    //
    Write(Format('INTERPOLATION BY NATURAL CUBIC SPLINE'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x), [0, pi], 3 nodes'#13#10''#13#10'',[]));
    Write(Format('     x   F(x)   S(x)  Error'#13#10'',[]));
    
    //
    // Create spline
    //
    N := 3;
    SetLength(X, N);
    SetLength(Y, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := Pi*I/(N-1);
        Y[I] := Sin(X[I]);
        Inc(I);
    end;
    Spline1DBuildCubic(X, Y, N, 1, +1, 1, -1, S);
    
    //
    // Output results
    //
    T := 0;
    MaxErr := 0;
    while AP_FP_Less(T,Double(0.999999)*Pi) do
    begin
        Err := AbsReal(Spline1DCalc(S, T)-Sin(T));
        MaxErr := Max(Err, MaxErr);
        Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10'',[
            T,
            Sin(T),
            Spline1DCalc(S, T),
            Err]));
        T := Min(Pi, T+Double(0.25));
    end;
    Err := AbsReal(Spline1DCalc(S, Pi)-Sin(Pi));
    MaxErr := Max(Err, MaxErr);
    Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10''#13#10'',[
        Pi,
        Sin(Pi),
        Spline1DCalc(S, Pi),
        Err]));
    Write(Format('max|error| = %0.3f'#13#10'',[
        MaxErr]));
    Write(Format('Try other demos (spline1d_linear, spline1d_hermite) and compare errors...'#13#10''#13#10''#13#10'',[]));
end.

spline1d_fit example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    Info : AlglibInteger;
    S : Spline1DInterpolant;
    T : Double;
    Rep : Spline1DFitReport;
begin
    
    //
    // Fitting by unconstrained natural cubic spline
    //
    Write(Format('FITTING BY UNCONSTRAINED NATURAL CUBIC SPLINE'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x)      function being fitted'#13#10'',[]));
    Write(Format('[0, pi]          interval'#13#10'',[]));
    Write(Format('M=4              number of basis functions to use'#13#10'',[]));
    Write(Format('N=100            number of points to fit'#13#10'',[]));
    
    //
    // Create and fit
    //
    N := 100;
    SetLength(X, N);
    SetLength(Y, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := Pi*I/(N-1);
        Y[I] := Sin(X[I]);
        Inc(I);
    end;
    Spline1DFitCubic(X, Y, N, 4, Info, S, Rep);
    
    //
    // Output results
    //
    if Info>0 then
    begin
        Write(Format(''#13#10'OK, we have finished'#13#10''#13#10'',[]));
        Write(Format('     x   F(x)   S(x)  Error'#13#10'',[]));
        T := 0;
        while AP_FP_Less(T,Double(0.999999)*Pi) do
        begin
            Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10'',[
                T,
                Sin(T),
                Spline1DCalc(S, T),
                AbsReal(Spline1DCalc(S, T)-Sin(T))]));
            T := Min(Pi, T+Double(0.25));
        end;
        Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10''#13#10'',[
            T,
            Sin(T),
            Spline1DCalc(S, T),
            AbsReal(Spline1DCalc(S, T)-Sin(T))]));
        Write(Format('rms error is %6.3f'#13#10'',[
            Rep.RMSError]));
        Write(Format('max error is %6.3f'#13#10'',[
            Rep.MaxError]));
    end
    else
    begin
        Write(Format(''#13#10'Something wrong, Info=%0d',[
            Info]));
    end;
end.

spline1d_fitc example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    W : TReal1DArray;
    XC : TReal1DArray;
    YC : TReal1DArray;
    DC : TInteger1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    Info : AlglibInteger;
    S : Spline1DInterpolant;
    T : Double;
    Rep : Spline1DFitReport;
begin
    
    //
    // Fitting by constrained Hermite spline
    //
    Write(Format('FITTING BY CONSTRAINED HERMITE SPLINE'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x)      function being fitted'#13#10'',[]));
    Write(Format('[0, pi]          interval'#13#10'',[]));
    Write(Format('M=6              number of basis functions to use'#13#10'',[]));
    Write(Format('S(0)=0           first constraint'#13#10'',[]));
    Write(Format('S(pi)=0          second constraint'#13#10'',[]));
    Write(Format('N=100            number of points to fit'#13#10'',[]));
    
    //
    // Create and fit:
    // * X  contains points
    // * Y  contains values
    // * W  contains weights
    // * XC contains constraints locations
    // * YC contains constraints values
    // * DC contains derivative indexes (0 = constrained function value)
    //
    N := 100;
    SetLength(X, N);
    SetLength(Y, N);
    SetLength(W, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := Pi*I/(N-1);
        Y[I] := Sin(X[I]);
        W[I] := 1;
        Inc(I);
    end;
    SetLength(XC, 2);
    SetLength(YC, 2);
    SetLength(DC, 2);
    XC[0] := 0;
    YC[0] := 0;
    DC[0] := 0;
    XC[0] := Pi;
    YC[0] := 0;
    DC[0] := 0;
    Spline1DFitHermiteWC(X, Y, W, N, XC, YC, DC, 2, 6, Info, S, Rep);
    
    //
    // Output results
    //
    if Info>0 then
    begin
        Write(Format(''#13#10'OK, we have finished'#13#10''#13#10'',[]));
        Write(Format('     x   F(x)   S(x)  Error'#13#10'',[]));
        T := 0;
        while AP_FP_Less(T,Double(0.999999)*Pi) do
        begin
            Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10'',[
                T,
                Sin(T),
                Spline1DCalc(S, T),
                AbsReal(Spline1DCalc(S, T)-Sin(T))]));
            T := Min(Pi, T+Double(0.25));
        end;
        Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10''#13#10'',[
            T,
            Sin(T),
            Spline1DCalc(S, T),
            AbsReal(Spline1DCalc(S, T)-Sin(T))]));
        Write(Format('rms error is %6.3f'#13#10'',[
            Rep.RMSError]));
        Write(Format('max error is %6.3f'#13#10'',[
            Rep.MaxError]));
        Write(Format('S(0) = S(pi) = 0 (exactly)'#13#10''#13#10'',[]));
    end
    else
    begin
        Write(Format(''#13#10'Something wrong, Info=%0d',[
            Info]));
    end;
end.

spline1d_hermite example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    D : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    T : Double;
    S : Spline1DInterpolant;
    Err : Double;
    MaxErr : Double;
begin
    
    //
    // Interpolation by natural Cubic spline.
    //
    Write(Format('INTERPOLATION BY HERMITE SPLINE'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x), [0, pi], 3 nodes'#13#10''#13#10'',[]));
    Write(Format('     x   F(x)   S(x)  Error'#13#10'',[]));
    
    //
    // Create spline
    //
    N := 3;
    SetLength(X, N);
    SetLength(Y, N);
    SetLength(D, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := Pi*I/(N-1);
        Y[I] := Sin(X[I]);
        D[I] := Cos(X[I]);
        Inc(I);
    end;
    Spline1DBuildHermite(X, Y, D, N, S);
    
    //
    // Output results
    //
    T := 0;
    MaxErr := 0;
    while AP_FP_Less(T,Double(0.999999)*Pi) do
    begin
        Err := AbsReal(Spline1DCalc(S, T)-Sin(T));
        MaxErr := Max(Err, MaxErr);
        Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10'',[
            T,
            Sin(T),
            Spline1DCalc(S, T),
            Err]));
        T := Min(Pi, T+Double(0.25));
    end;
    Err := AbsReal(Spline1DCalc(S, Pi)-Sin(Pi));
    MaxErr := Max(Err, MaxErr);
    Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10''#13#10'',[
        Pi,
        Sin(Pi),
        Spline1DCalc(S, Pi),
        Err]));
    Write(Format('max|error| = %0.3f'#13#10'',[
        MaxErr]));
    Write(Format('Try other demos (spline1d_linear, spline1d_cubic) and compare errors...'#13#10''#13#10''#13#10'',[]));
end.

spline1d_linear example

var
    X : TReal1DArray;
    Y : TReal1DArray;
    N : AlglibInteger;
    I : AlglibInteger;
    T : Double;
    S : Spline1DInterpolant;
    Err : Double;
    MaxErr : Double;
begin
    
    //
    // Interpolation by linear spline.
    //
    Write(Format('INTERPOLATION BY LINEAR SPLINE'#13#10''#13#10'',[]));
    Write(Format('F(x)=sin(x), [0, pi], 3 nodes'#13#10''#13#10'',[]));
    Write(Format('     x   F(x)   S(x)  Error'#13#10'',[]));
    
    //
    // Create spline
    //
    N := 3;
    SetLength(X, N);
    SetLength(Y, N);
    I:=0;
    while I<=N-1 do
    begin
        X[I] := Pi*I/(N-1);
        Y[I] := Sin(X[I]);
        Inc(I);
    end;
    Spline1DBuildLinear(X, Y, N, S);
    
    //
    // Output results
    //
    T := 0;
    MaxErr := 0;
    while AP_FP_Less(T,Double(0.999999)*Pi) do
    begin
        Err := AbsReal(Spline1DCalc(S, T)-Sin(T));
        MaxErr := Max(Err, MaxErr);
        Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10'',[
            T,
            Sin(T),
            Spline1DCalc(S, T),
            Err]));
        T := Min(Pi, T+Double(0.25));
    end;
    Err := AbsReal(Spline1DCalc(S, Pi)-Sin(Pi));
    MaxErr := Max(Err, MaxErr);
    Write(Format('%6.3f %6.3f %6.3f %6.3f'#13#10''#13#10'',[
        Pi,
        Sin(Pi),
        Spline1DCalc(S, Pi),
        Err]));
    Write(Format('max|error| = %0.3f'#13#10'',[
        MaxErr]));
    Write(Format('Try other demos (spline1d_hermite, spline1d_cubic) and compare errors...'#13#10''#13#10''#13#10'',[]));
end.

spline2d unit

Structures

spline2dinterpolant

Subroutines

spline2dbuildbicubic
spline2dbuildbilinear
spline2dcalc
spline2dcopy
spline2ddiff
spline2dlintransf
spline2dlintransxy
spline2dresamplebicubic
spline2dresamplebilinear
spline2dserialize
spline2dunpack
spline2dunserialize

spline2dinterpolant structure

(************************************************************************* 2-dimensional spline inteprolant *************************************************************************)
Spline2DInterpolant = record K : AlglibInteger; C : TReal1DArray; end;

spline2dbuildbicubic subroutine

(************************************************************************* This subroutine builds bicubic spline coefficients table. Input parameters: X - spline abscissas, array[0..N-1] Y - spline ordinates, array[0..M-1] F - function values, array[0..M-1,0..N-1] M,N - grid size, M>=2, N>=2 Output parameters: C - spline interpolant -- ALGLIB PROJECT -- Copyright 05.07.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline2DBuildBicubic(X : TReal1DArray; Y : TReal1DArray; F : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var C : Spline2DInterpolant);

spline2dbuildbilinear subroutine

(************************************************************************* This subroutine builds bilinear spline coefficients table. Input parameters: X - spline abscissas, array[0..N-1] Y - spline ordinates, array[0..M-1] F - function values, array[0..M-1,0..N-1] M,N - grid size, M>=2, N>=2 Output parameters: C - spline interpolant -- ALGLIB PROJECT -- Copyright 05.07.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline2DBuildBilinear(X : TReal1DArray; Y : TReal1DArray; F : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var C : Spline2DInterpolant);

spline2dcalc subroutine

(************************************************************************* This subroutine calculates the value of the bilinear or bicubic spline at the given point X. Input parameters: C - coefficients table. Built by BuildBilinearSpline or BuildBicubicSpline. X, Y- point Result: S(x,y) -- ALGLIB PROJECT -- Copyright 05.07.2007 by Bochkanov Sergey *************************************************************************)
function Spline2DCalc(const C : Spline2DInterpolant; X : Double; Y : Double):Double;

spline2dcopy subroutine

(************************************************************************* This subroutine makes the copy of the spline model. Input parameters: C - spline interpolant Output parameters: CC - spline copy -- ALGLIB PROJECT -- Copyright 29.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline2DCopy(const C : Spline2DInterpolant; var CC : Spline2DInterpolant);

spline2ddiff subroutine

(************************************************************************* This subroutine calculates the value of the bilinear or bicubic spline at the given point X and its derivatives. Input parameters: C - spline interpolant. X, Y- point Output parameters: F - S(x,y) FX - dS(x,y)/dX FY - dS(x,y)/dY FXY - d2S(x,y)/dXdY -- ALGLIB PROJECT -- Copyright 05.07.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline2DDiff(const C : Spline2DInterpolant; X : Double; Y : Double; var F : Double; var FX : Double; var FY : Double; var FXY : Double);

spline2dlintransf subroutine

(************************************************************************* This subroutine performs linear transformation of the spline. Input parameters: C - spline interpolant. A, B- transformation coefficients: S2(x,y) = A*S(x,y) + B Output parameters: C - transformed spline -- ALGLIB PROJECT -- Copyright 30.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline2DLinTransF(var C : Spline2DInterpolant; A : Double; B : Double);

spline2dlintransxy subroutine

(************************************************************************* This subroutine performs linear transformation of the spline argument. Input parameters: C - spline interpolant AX, BX - transformation coefficients: x = A*t + B AY, BY - transformation coefficients: y = A*u + B Result: C - transformed spline -- ALGLIB PROJECT -- Copyright 30.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline2DLinTransXY(var C : Spline2DInterpolant; AX : Double; BX : Double; AY : Double; BY : Double);

spline2dresamplebicubic subroutine

(************************************************************************* Bicubic spline resampling Input parameters: A - function values at the old grid, array[0..OldHeight-1, 0..OldWidth-1] OldHeight - old grid height, OldHeight>1 OldWidth - old grid width, OldWidth>1 NewHeight - new grid height, NewHeight>1 NewWidth - new grid width, NewWidth>1 Output parameters: B - function values at the new grid, array[0..NewHeight-1, 0..NewWidth-1] -- ALGLIB routine -- 15 May, 2007 Copyright by Bochkanov Sergey *************************************************************************)
procedure Spline2DResampleBicubic(const A : TReal2DArray; OldHeight : AlglibInteger; OldWidth : AlglibInteger; var B : TReal2DArray; NewHeight : AlglibInteger; NewWidth : AlglibInteger);

spline2dresamplebilinear subroutine

(************************************************************************* Bilinear spline resampling Input parameters: A - function values at the old grid, array[0..OldHeight-1, 0..OldWidth-1] OldHeight - old grid height, OldHeight>1 OldWidth - old grid width, OldWidth>1 NewHeight - new grid height, NewHeight>1 NewWidth - new grid width, NewWidth>1 Output parameters: B - function values at the new grid, array[0..NewHeight-1, 0..NewWidth-1] -- ALGLIB routine -- 09.07.2007 Copyright by Bochkanov Sergey *************************************************************************)
procedure Spline2DResampleBilinear(const A : TReal2DArray; OldHeight : AlglibInteger; OldWidth : AlglibInteger; var B : TReal2DArray; NewHeight : AlglibInteger; NewWidth : AlglibInteger);

spline2dserialize subroutine

(************************************************************************* Serialization of the spline interpolant INPUT PARAMETERS: B - spline interpolant OUTPUT PARAMETERS: RA - array of real numbers which contains interpolant, array[0..RLen-1] RLen - RA lenght -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure Spline2DSerialize(const C : Spline2DInterpolant; var RA : TReal1DArray; var RALen : AlglibInteger);

spline2dunpack subroutine

(************************************************************************* This subroutine unpacks two-dimensional spline into the coefficients table Input parameters: C - spline interpolant. Result: M, N- grid size (x-axis and y-axis) Tbl - coefficients table, unpacked format, [0..(N-1)*(M-1)-1, 0..19]. For I = 0...M-2, J=0..N-2: K = I*(N-1)+J Tbl[K,0] = X[j] Tbl[K,1] = X[j+1] Tbl[K,2] = Y[i] Tbl[K,3] = Y[i+1] Tbl[K,4] = C00 Tbl[K,5] = C01 Tbl[K,6] = C02 Tbl[K,7] = C03 Tbl[K,8] = C10 Tbl[K,9] = C11 ... Tbl[K,19] = C33 On each grid square spline is equals to: S(x) = SUM(c[i,j]*(x^i)*(y^j), i=0..3, j=0..3) t = x-x[j] u = y-y[i] -- ALGLIB PROJECT -- Copyright 29.06.2007 by Bochkanov Sergey *************************************************************************)
procedure Spline2DUnpack(const C : Spline2DInterpolant; var M : AlglibInteger; var N : AlglibInteger; var Tbl : TReal2DArray);

spline2dunserialize subroutine

(************************************************************************* Unserialization of the spline interpolant INPUT PARAMETERS: RA - array of real numbers which contains interpolant, OUTPUT PARAMETERS: B - spline interpolant -- ALGLIB -- Copyright 17.08.2009 by Bochkanov Sergey *************************************************************************)
procedure Spline2DUnserialize(const RA : TReal1DArray; var C : Spline2DInterpolant);

srcond unit

Subroutines

smatrixldltrcond
smatrixrcond

smatrixldltrcond subroutine

(************************************************************************* Condition number estimate of a matrix given by LDLT-decomposition The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). It should be noted that 1-norm and inf-norm condition numbers of symmetric matrices are equal, so the algorithm doesn't take into account the differences between these types of norms. Input parameters: L - LDLT-decomposition of matrix A given by the upper or lower triangle depending on IsUpper. Output of SMatrixLDLT subroutine. Pivots - table of permutations which were made during LDLT-decomposition, Output of SMatrixLDLT subroutine. N - size of matrix A. IsUpper - storage format. Result: 1/LowerBound(cond(A)) *************************************************************************)
function SMatrixLDLTRCond(const L : TReal2DArray; const Pivots : TInteger1DArray; N : AlglibInteger; IsUpper : Boolean):Double;

smatrixrcond subroutine

(************************************************************************* Condition number estimate of a symmetric matrix The algorithm calculates a lower bound of the condition number. In this case, the algorithm does not return a lower bound of the condition number, but an inverse number (to avoid an overflow in case of a singular matrix). It should be noted that 1-norm and inf-norm condition numbers of symmetric matrices are equal, so the algorithm doesn't take into account the differences between these types of norms. Input parameters: A - symmetric definite matrix which is given by its upper or lower triangle depending on IsUpper. Array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - storage format. Result: 1/LowerBound(cond(A)) *************************************************************************)
function SMatrixRCond(const A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean):Double;

ssolve unit

Subroutines

smatrixldltsolve
smatrixsolve

smatrixldltsolve subroutine

(************************************************************************* Solving a system of linear equations with a system matrix given by its LDLT decomposition The algorithm solves systems with a square matrix only. Input parameters: A - LDLT decomposition of the matrix (the result of the SMatrixLDLT subroutine). Pivots - row permutation table (the result of the SMatrixLDLT subroutine). B - right side of a system. Array whose index ranges within [0..N-1]. N - size of matrix A. IsUpper - points to the triangle of matrix A in which the LDLT decomposition is stored. If IsUpper=True, the decomposition has the form of U*D*U', matrix U is stored in the upper triangle of matrix A (in that case, the lower triangle isn't used and isn't changed by the subroutine). Similarly, if IsUpper=False, the decomposition has the form of L*D*L' and the lower triangle stores matrix L. Output parameters: X - solution of a system. Array whose index ranges within [0..N-1]. Result: True, if the matrix is not singular. X contains the solution. False, if the matrix is singular (the determinant of matrix D is equal to 0). In this case, X doesn't contain a solution. *************************************************************************)
function SMatrixLDLTSolve(const A : TReal2DArray; const Pivots : TInteger1DArray; B : TReal1DArray; N : AlglibInteger; IsUpper : Boolean; var X : TReal1DArray):Boolean;

smatrixsolve subroutine

(************************************************************************* Solving a system of linear equations with a symmetric system matrix Input parameters: A - system matrix (upper or lower triangle). Array whose indexes range within [0..N-1, 0..N-1]. B - right side of a system. Array whose index ranges within [0..N-1]. N - size of matrix A. IsUpper - If IsUpper = True, A contains the upper triangle, otherwise A contains the lower triangle. Output parameters: X - solution of a system. Array whose index ranges within [0..N-1]. Result: True, if the matrix is not singular. X contains the solution. False, if the matrix is singular (the determinant of the matrix is equal to 0). In this case, X doesn't contain a solution. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
function SMatrixSolve(A : TReal2DArray; const B : TReal1DArray; N : AlglibInteger; IsUpper : Boolean; var X : TReal1DArray):Boolean;

stest unit

Subroutines

onesamplesigntest

onesamplesigntest subroutine

(************************************************************************* Sign test This test checks three hypotheses about the median of the given sample. The following tests are performed: * two-tailed test (null hypothesis - the median is equal to the given value) * left-tailed test (null hypothesis - the median is greater than or equal to the given value) * right-tailed test (null hypothesis - the median is less than or equal to the given value) Requirements: * the scale of measurement should be ordinal, interval or ratio (i.e. the test could not be applied to nominal variables). The test is non-parametric and doesn't require distribution X to be normal Input parameters: X - sample. Array whose index goes from 0 to N-1. N - size of the sample. Median - assumed median value. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. While calculating p-values high-precision binomial distribution approximation is used, so significance levels have about 15 exact digits. -- ALGLIB -- Copyright 08.09.2006 by Bochkanov Sergey *************************************************************************)
procedure OneSampleSignTest(const X : TReal1DArray; N : AlglibInteger; Median : Double; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

studenttdistr unit

Subroutines

invstudenttdistribution
studenttdistribution

invstudenttdistribution subroutine

(************************************************************************* Functional inverse of Student's t distribution Given probability p, finds the argument t such that stdtr(k,t) is equal to p. ACCURACY: Tested at random 1 <= k <= 100. The "domain" refers to p: Relative error: arithmetic domain # trials peak rms IEEE .001,.999 25000 5.7e-15 8.0e-16 IEEE 10^-6,.001 25000 2.0e-12 2.9e-14 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function InvStudentTDistribution(k : AlglibInteger; p : Double):Double;

studenttdistribution subroutine

(************************************************************************* Student's t distribution Computes the integral from minus infinity to t of the Student t distribution with integer k > 0 degrees of freedom: t - | | - | 2 -(k+1)/2 | ( (k+1)/2 ) | ( x ) ---------------------- | ( 1 + --- ) dx - | ( k ) sqrt( k pi ) | ( k/2 ) | | | - -inf. Relation to incomplete beta integral: 1 - stdtr(k,t) = 0.5 * incbet( k/2, 1/2, z ) where z = k/(k + t**2). For t < -2, this is the method of computation. For higher t, a direct method is derived from integration by parts. Since the function is symmetric about t=0, the area under the right tail of the density is found by calling the function with -t instead of t. ACCURACY: Tested at random 1 <= k <= 25. The "domain" refers to t. Relative error: arithmetic domain # trials peak rms IEEE -100,-2 50000 5.9e-15 1.4e-15 IEEE -2,100 500000 2.7e-15 4.9e-17 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier *************************************************************************)
function StudentTDistribution(k : AlglibInteger; t : Double):Double;

studentttests unit

Subroutines

studentttest1
studentttest2
unequalvariancettest

studentttest1 subroutine

(************************************************************************* One-sample t-test This test checks three hypotheses about the mean of the given sample. The following tests are performed: * two-tailed test (null hypothesis - the mean is equal to the given value) * left-tailed test (null hypothesis - the mean is greater than or equal to the given value) * right-tailed test (null hypothesis - the mean is less than or equal to the given value). The test is based on the assumption that a given sample has a normal distribution and an unknown dispersion. If the distribution sharply differs from normal, the test will work incorrectly. Input parameters: X - sample. Array whose index goes from 0 to N-1. N - size of sample. Mean - assumed value of the mean. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. -- ALGLIB -- Copyright 08.09.2006 by Bochkanov Sergey *************************************************************************)
procedure StudentTTest1(const X : TReal1DArray; N : AlglibInteger; Mean : Double; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

studentttest2 subroutine

(************************************************************************* Two-sample pooled test This test checks three hypotheses about the mean of the given samples. The following tests are performed: * two-tailed test (null hypothesis - the means are equal) * left-tailed test (null hypothesis - the mean of the first sample is greater than or equal to the mean of the second sample) * right-tailed test (null hypothesis - the mean of the first sample is less than or equal to the mean of the second sample). Test is based on the following assumptions: * given samples have normal distributions * dispersions are equal * samples are independent. Input parameters: X - sample 1. Array whose index goes from 0 to N-1. N - size of sample. Y - sample 2. Array whose index goes from 0 to M-1. M - size of sample. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. -- ALGLIB -- Copyright 18.09.2006 by Bochkanov Sergey *************************************************************************)
procedure StudentTTest2(const X : TReal1DArray; N : AlglibInteger; const Y : TReal1DArray; M : AlglibInteger; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

unequalvariancettest subroutine

(************************************************************************* Two-sample unpooled test This test checks three hypotheses about the mean of the given samples. The following tests are performed: * two-tailed test (null hypothesis - the means are equal) * left-tailed test (null hypothesis - the mean of the first sample is greater than or equal to the mean of the second sample) * right-tailed test (null hypothesis - the mean of the first sample is less than or equal to the mean of the second sample). Test is based on the following assumptions: * given samples have normal distributions * samples are independent. Dispersion equality is not required Input parameters: X - sample 1. Array whose index goes from 0 to N-1. N - size of the sample. Y - sample 2. Array whose index goes from 0 to M-1. M - size of the sample. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. -- ALGLIB -- Copyright 18.09.2006 by Bochkanov Sergey *************************************************************************)
procedure UnequalVarianceTTest(const X : TReal1DArray; N : AlglibInteger; const Y : TReal1DArray; M : AlglibInteger; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

svd unit

Subroutines

rmatrixsvd

rmatrixsvd subroutine

(************************************************************************* Singular value decomposition of a rectangular matrix. The algorithm calculates the singular value decomposition of a matrix of size MxN: A = U * S * V^T The algorithm finds the singular values and, optionally, matrices U and V^T. The algorithm can find both first min(M,N) columns of matrix U and rows of matrix V^T (singular vectors), and matrices U and V^T wholly (of sizes MxM and NxN respectively). Take into account that the subroutine does not return matrix V but V^T. Input parameters: A - matrix to be decomposed. Array whose indexes range within [0..M-1, 0..N-1]. M - number of rows in matrix A. N - number of columns in matrix A. UNeeded - 0, 1 or 2. See the description of the parameter U. VTNeeded - 0, 1 or 2. See the description of the parameter VT. AdditionalMemory - If the parameter: * equals 0, the algorithm doesn’t use additional memory (lower requirements, lower performance). * equals 1, the algorithm uses additional memory of size min(M,N)*min(M,N) of real numbers. It often speeds up the algorithm. * equals 2, the algorithm uses additional memory of size M*min(M,N) of real numbers. It allows to get a maximum performance. The recommended value of the parameter is 2. Output parameters: W - contains singular values in descending order. U - if UNeeded=0, U isn't changed, the left singular vectors are not calculated. if Uneeded=1, U contains left singular vectors (first min(M,N) columns of matrix U). Array whose indexes range within [0..M-1, 0..Min(M,N)-1]. if UNeeded=2, U contains matrix U wholly. Array whose indexes range within [0..M-1, 0..M-1]. VT - if VTNeeded=0, VT isn’t changed, the right singular vectors are not calculated. if VTNeeded=1, VT contains right singular vectors (first min(M,N) rows of matrix V^T). Array whose indexes range within [0..min(M,N)-1, 0..N-1]. if VTNeeded=2, VT contains matrix V^T wholly. Array whose indexes range within [0..N-1, 0..N-1]. -- ALGLIB -- Copyright 2005 by Bochkanov Sergey *************************************************************************)
function RMatrixSVD(A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; UNeeded : AlglibInteger; VTNeeded : AlglibInteger; AdditionalMemory : AlglibInteger; var W : TReal1DArray; var U : TReal2DArray; var VT : TReal2DArray):Boolean;

trfac unit

Subroutines

cmatrixlu
hpdmatrixcholesky
rmatrixlu
spdmatrixcholesky

cmatrixlu subroutine

(************************************************************************* LU decomposition of a general complex matrix with row pivoting A is represented as A = P*L*U, where: * L is lower unitriangular matrix * U is upper triangular matrix * P = P0*P1*...*PK, K=min(M,N)-1, Pi - permutation matrix for I and Pivots[I] This is cache-oblivous implementation of LU decomposition. It is optimized for square matrices. As for rectangular matrices: * best case - M>>N * worst case - N>>M, small M, large N, matrix does not fit in CPU cache INPUT PARAMETERS: A - array[0..M-1, 0..N-1]. M - number of rows in matrix A. N - number of columns in matrix A. OUTPUT PARAMETERS: A - matrices L and U in compact form: * L is stored under main diagonal * U is stored on and above main diagonal Pivots - permutation matrix in compact form. array[0..Min(M-1,N-1)]. -- ALGLIB routine -- 10.01.2010 Bochkanov Sergey *************************************************************************)
procedure CMatrixLU(var A : TComplex2DArray; M : AlglibInteger; N : AlglibInteger; var Pivots : TInteger1DArray);

hpdmatrixcholesky subroutine

(************************************************************************* Cache-oblivious Cholesky decomposition The algorithm computes Cholesky decomposition of a Hermitian positive- definite matrix. The result of an algorithm is a representation of A as A=U'*U or A=L*L' (here X' detones conj(X^T)). INPUT PARAMETERS: A - upper or lower triangle of a factorized matrix. array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - if IsUpper=True, then A contains an upper triangle of a symmetric matrix, otherwise A contains a lower one. OUTPUT PARAMETERS: A - the result of factorization. If IsUpper=True, then the upper triangle contains matrix U, so that A = U'*U, and the elements below the main diagonal are not modified. Similarly, if IsUpper = False. RESULT: If the matrix is positive-definite, the function returns True. Otherwise, the function returns False. Contents of A is not determined in such case. -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
function HPDMatrixCholesky(var A : TComplex2DArray; N : AlglibInteger; IsUpper : Boolean):Boolean;

rmatrixlu subroutine

(************************************************************************* LU decomposition of a general real matrix with row pivoting A is represented as A = P*L*U, where: * L is lower unitriangular matrix * U is upper triangular matrix * P = P0*P1*...*PK, K=min(M,N)-1, Pi - permutation matrix for I and Pivots[I] This is cache-oblivous implementation of LU decomposition. It is optimized for square matrices. As for rectangular matrices: * best case - M>>N * worst case - N>>M, small M, large N, matrix does not fit in CPU cache INPUT PARAMETERS: A - array[0..M-1, 0..N-1]. M - number of rows in matrix A. N - number of columns in matrix A. OUTPUT PARAMETERS: A - matrices L and U in compact form: * L is stored under main diagonal * U is stored on and above main diagonal Pivots - permutation matrix in compact form. array[0..Min(M-1,N-1)]. -- ALGLIB routine -- 10.01.2010 Bochkanov Sergey *************************************************************************)
procedure RMatrixLU(var A : TReal2DArray; M : AlglibInteger; N : AlglibInteger; var Pivots : TInteger1DArray);

spdmatrixcholesky subroutine

(************************************************************************* Cache-oblivious Cholesky decomposition The algorithm computes Cholesky decomposition of a symmetric positive- definite matrix. The result of an algorithm is a representation of A as A=U^T*U or A=L*L^T INPUT PARAMETERS: A - upper or lower triangle of a factorized matrix. array with elements [0..N-1, 0..N-1]. N - size of matrix A. IsUpper - if IsUpper=True, then A contains an upper triangle of a symmetric matrix, otherwise A contains a lower one. OUTPUT PARAMETERS: A - the result of factorization. If IsUpper=True, then the upper triangle contains matrix U, so that A = U^T*U, and the elements below the main diagonal are not modified. Similarly, if IsUpper = False. RESULT: If the matrix is positive-definite, the function returns True. Otherwise, the function returns False. Contents of A is not determined in such case. -- ALGLIB routine -- 15.12.2009 Bochkanov Sergey *************************************************************************)
function SPDMatrixCholesky(var A : TReal2DArray; N : AlglibInteger; IsUpper : Boolean):Boolean;

trigintegrals unit

Subroutines

hyperbolicsinecosineintegrals
sinecosineintegrals

hyperbolicsinecosineintegrals subroutine

(************************************************************************* Hyperbolic sine and cosine integrals Approximates the integrals x - | | cosh t - 1 Chi(x) = eul + ln x + | ----------- dt, | | t - 0 x - | | sinh t Shi(x) = | ------ dt | | t - 0 where eul = 0.57721566490153286061 is Euler's constant. The integrals are evaluated by power series for x < 8 and by Chebyshev expansions for x between 8 and 88. For large x, both functions approach exp(x)/2x. Arguments greater than 88 in magnitude return MAXNUM. ACCURACY: Test interval 0 to 88. Relative error: arithmetic function # trials peak rms IEEE Shi 30000 6.9e-16 1.6e-16 Absolute error, except relative when |Chi| > 1: IEEE Chi 30000 8.4e-16 1.4e-16 Cephes Math Library Release 2.8: June, 2000 Copyright 1984, 1987, 2000 by Stephen L. Moshier *************************************************************************)
procedure HyperbolicSineCosineIntegrals(X : Double; var Shi : Double; var Chi : Double);

sinecosineintegrals subroutine

(************************************************************************* Sine and cosine integrals Evaluates the integrals x - | cos t - 1 Ci(x) = eul + ln x + | --------- dt, | t - 0 x - | sin t Si(x) = | ----- dt | t - 0 where eul = 0.57721566490153286061 is Euler's constant. The integrals are approximated by rational functions. For x > 8 auxiliary functions f(x) and g(x) are employed such that Ci(x) = f(x) sin(x) - g(x) cos(x) Si(x) = pi/2 - f(x) cos(x) - g(x) sin(x) ACCURACY: Test interval = [0,50]. Absolute error, except relative when > 1: arithmetic function # trials peak rms IEEE Si 30000 4.4e-16 7.3e-17 IEEE Ci 30000 6.9e-16 5.1e-17 Cephes Math Library Release 2.1: January, 1989 Copyright 1984, 1987, 1989 by Stephen L. Moshier *************************************************************************)
procedure SineCosineIntegrals(X : Double; var SI : Double; var CI : Double);

variancetests unit

Subroutines

ftest
onesamplevariancetest

ftest subroutine

(************************************************************************* Two-sample F-test This test checks three hypotheses about dispersions of the given samples. The following tests are performed: * two-tailed test (null hypothesis - the dispersions are equal) * left-tailed test (null hypothesis - the dispersion of the first sample is greater than or equal to the dispersion of the second sample). * right-tailed test (null hypothesis - the dispersion of the first sample is less than or equal to the dispersion of the second sample) The test is based on the following assumptions: * the given samples have normal distributions * the samples are independent. Input parameters: X - sample 1. Array whose index goes from 0 to N-1. N - sample size. Y - sample 2. Array whose index goes from 0 to M-1. M - sample size. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. -- ALGLIB -- Copyright 19.09.2006 by Bochkanov Sergey *************************************************************************)
procedure FTest(const X : TReal1DArray; N : AlglibInteger; const Y : TReal1DArray; M : AlglibInteger; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

onesamplevariancetest subroutine

(************************************************************************* One-sample chi-square test This test checks three hypotheses about the dispersion of the given sample The following tests are performed: * two-tailed test (null hypothesis - the dispersion equals the given number) * left-tailed test (null hypothesis - the dispersion is greater than or equal to the given number) * right-tailed test (null hypothesis - dispersion is less than or equal to the given number). Test is based on the following assumptions: * the given sample has a normal distribution. Input parameters: X - sample 1. Array whose index goes from 0 to N-1. N - size of the sample. Variance - dispersion value to compare with. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. -- ALGLIB -- Copyright 19.09.2006 by Bochkanov Sergey *************************************************************************)
procedure OneSampleVarianceTest(const X : TReal1DArray; N : AlglibInteger; Variance : Double; var BothTails : Double; var LeftTail : Double; var RightTail : Double);

wsr unit

Subroutines

wilcoxonsignedranktest

wilcoxonsignedranktest subroutine

(************************************************************************* Wilcoxon signed-rank test This test checks three hypotheses about the median of the given sample. The following tests are performed: * two-tailed test (null hypothesis - the median is equal to the given value) * left-tailed test (null hypothesis - the median is greater than or equal to the given value) * right-tailed test (null hypothesis - the median is less than or equal to the given value) Requirements: * the scale of measurement should be ordinal, interval or ratio (i.e. the test could not be applied to nominal variables). * the distribution should be continuous and symmetric relative to its median. * number of distinct values in the X array should be greater than 4 The test is non-parametric and doesn't require distribution X to be normal Input parameters: X - sample. Array whose index goes from 0 to N-1. N - size of the sample. Median - assumed median value. Output parameters: BothTails - p-value for two-tailed test. If BothTails is less than the given significance level the null hypothesis is rejected. LeftTail - p-value for left-tailed test. If LeftTail is less than the given significance level, the null hypothesis is rejected. RightTail - p-value for right-tailed test. If RightTail is less than the given significance level the null hypothesis is rejected. To calculate p-values, special approximation is used. This method lets us calculate p-values with two decimal places in interval [0.0001, 1]. "Two decimal places" does not sound very impressive, but in practice the relative error of less than 1% is enough to make a decision. There is no approximation outside the [0.0001, 1] interval. Therefore, if the significance level outlies this interval, the test returns 0.0001. -- ALGLIB -- Copyright 08.09.2006 by Bochkanov Sergey *************************************************************************)
procedure WilcoxonSignedRankTest(X : TReal1DArray; N : AlglibInteger; E : Double; var BothTails : Double; var LeftTail : Double; var RightTail : Double);