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Abstract— Demand side management will be a key component
of future smart grid that can help reduce peak load and adapt
elastic demand to fluctuating generations. In this paper, we
consider households that operate different appliances including
PHEVs and batteries and propose a demand response approach
based on utility maximization. Each appliance provides a certain
benefit depending on the pattern or volume of power it consumes.
Each household wishes to optimally schedule its power consump-
tion so as to maximize its individual net benefit subject to various
consumption and power flow constraints. We show that there
exist time-varying prices that can align individual optimality with
social optimality, i.e., under such prices, when the households
selfishly optimize their own benefits, they automatically also
maximize the social welfare. The utility company can thus
use dynamic pricing to coordinate demand responses to the
benefit of the overall system. We propose a distributed algorithm
for the utility company and the customers to jointly compute
this optimal prices and demand schedules. Finally, we present
simulation results that illustrate several interesting properties of
the proposed scheme.

I. INTRODUCTION

Demand side management will be a key component of
future smart grid that can help reduce peak load and adapt
elastic demand to fluctuating generations. In this paper, we
consider households that operate different appliances including
PHEVs and batteries and propose a demand response approach
based on utility maximization. Each appliance provides a
certain benefit depending on the pattern or volume of power
it consumes. Each household wishes to optimally schedule its
power consumption so as to maximize its individual net benefit
subject to various consumption and power flow constraints. We
show that there exist time-varying prices that can align indi-
vidual optimality with social optimality, i.e., under such prices,
when the households selfishly optimize their own benefits, they
automatically also maximize the social welfare. The utility
company can thus use dynamic pricing to coordinate demand
responses to the benefit of the overall system. We propose a
distributed algorithm for the utility company and the customers
to jointly compute this optimal prices and demand schedules.
Finally, we present simulation results that illustrate several
interesting properties of the proposed scheme, as follows.
First, different appliances are coordinated indirectly by real-

time pricing, so as to flatten the total demand at different
times as much as possible. Second, compared with no de-
mand response or flat-price schemes, real-time pricing is very
effective in shaping the demand: it not only greatly reduces
the peak load, but also the variation in demand. Third, the
integration of the battery helps reap more benefit from demand
response: it does not only reduce the peak load but further
flattens the entire profile and reduce the demand variation.
Forth, the real-time pricing scheme can increase the load factor

greatly and save a large amount of generation cost without
hurting customers’ utility; here again, battery amplifies this
benefit. Fifth, the cost of battery (such as lifetime in terms
of charging/discharging cycles) is important: the benefit of
demand response increases with lower battery cost. Finally,
as the number of the households increases, the benefit of our
demand response increases but will eventually saturate.
There exists a large literature on demand response, see, e.g.,

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. We briefly discuss
some that are directly relevant to our paper. First there are
papers on modeling specific appliances. For instance, [1] and
[2] consider the electricity load control with thermal mass in
buildings; [3] considers the coordination of charging PHEV
with other electric appliances. Then, there are papers on the
coordination among different appliances. [4] studies electricity
usage for a typical household and proposes a method for cus-
tomers to schedule their available distributed energy resources
to maximize net benefits in a day-ahead market. [5] proposes a
residential energy consumption scheduling framework which
attempts to achieve a desired trade-off between minimizing
the electricity payment and minimizing the waiting time for
the operation of each appliance in household in presence of
a real-time pricing tariff by doing price prediction based on
prior knowledge. While in practice, for different appliances,
the household may have a different objective than waiting time
for the operation of the appliance.
Besides the work such as [4], [5] which considers a sin-

gle household demand response given a pricing scheme, [6]
considers a power network where end customers choose their
daily schedules of their household appliances/loads by playing
games among themselves and the utility company tries to adopt
adequate pricing tariffs that differentiate the energy usage in
time and level to make the Nash equilibrium minimize the
energy costs. However, they assume that customers have full
knowledge of generation cost function and in their proposed
algorithm they require customers to update their energy con-
sumption scheduling asynchronously, both of which are hard
to implement in practice. [7] considers a centralized complex-
bid market-clearing mechanism where customers submit price-
sensitive bids in the day-ahead market, they did not study the
specific electricity consumptions model for the household.
Notations. We use qi,a(t) to denote the power demanded by
customer i for appliance a at time t. Then, qi,a := (qi,a(t), ∀t)
denotes the vector of power demands over t = 1, . . . , T ;
qi := (qi,a, ∀a ∈ Ai) denotes the vector of power demands
for all appliances in the collection Ai of customer i; and
q := (qi, ∀i) denotes the vector of power demands from all
customers. Similar convention is used for other quantities such
as battery charging schedules ri(t), ri, r.
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II. SYSTEM MODEL

Consider a set N of households/customers that are served
by a single utility company. The utility company participates in
wholesale markets (day-ahead, real-time balancing, ancillary
services) to purchase electricity from generators and then sell it
to theN customers in the retail market. Even though wholesale
prices can fluctuate rapidly by large amounts, currently most
utility companies hide this complexity and volatility from their
customers and offer electricity at a flat rate (fixed unit price),
perhaps in multiple tiers based on a customer’s consumption.
Even though the wholesale prices are determined by (sched-
uled or real-time) demand and supply and by congestion in
the transmission network (except for electricity provisioned
through long-term bilateral contracts), the retail prices are set
statically independent of the real-time load and congestion.
Flat-rate pricing has the important advantage of being simple
and predictable, but it does not encourage efficient use of
electricity. In this paper, we propose a way to use dynamic
pricing in the retail market to coordinate the customers’
demand responses to the benefit of individual customers and
the overall system. We now present our model, describe how
the utility should set their prices dynamically, how a customer
should respond, and the properties of the resulting operating
point.
We consider a discrete-time model with a finite horizon that

models a day. Each day is divided into T timeslots of equal
duration, indexed by t ∈ T := {1, 2, · · · , T }.

A. Utility company
The utility company serves as an intermediary that partici-

pates in multiple wholesale markets, including day-ahead, real-
time balancing and ancillary services, to provision enough
electricity to meet the demands of the N customers. The
design of the retail prices needs to at least recover the running
costs of the utility company, including the payments it incurs
in the various wholesale markets. It is an interesting subject
that is beyond the scope of this paper. For simplicity, we make
the important assumption that this design can be summarized
by a cost function C(Q, t) that specifies the cost for the
utility company to provide Q amount of power to the N
customers at time t. The modeling of cost function is an active
research issue [11], [10], [7]. Here we assume that the cost
function C(Q, t) is convex increasing in Q for each t. The
utility company sets the prices (p(t), t ∈ T ) according to an
algorithm described below.

B. Customers
Each customer i ∈ N operates a set Ai of appliances such

as air conditioner, refrigerator, plug-in hybrid electric vehicle
(PHEV), etc. For each appliance a ∈ Ai of customer i, we
denote by qi,a(t) its power draw at time t ∈ T , and by qi,a
the vector (qi,a(t), t ∈ T ) of power draws over the whole day.
An appliance a is characterized by two parameters:

• a utility function Ui,a(qi,a) that quantifies the utility user
i obtains when it consumes qi,a(t) power at each time
t ∈ T ; and

• a set of linear inequalities Ai,aqi,a ≤ ηi,a on the vector
power qi,a.

In Section IV, we will describe in detail how we model various
appliances through appropriate matrices A i,a and vector ηi,a.
Note that inelastic load, e.g., minimum refrigerator power, can
be modeled by qi,a(t) ≥ q

i,a
that says the appliance a of

customer i requires a minimum power q
i,a
at all times t. This

is a linear inequality constraint and part of Ai,aqi,a ≤ ηi,a.

C. Energy storage
In addition to appliances, a customer i may also possess

a battery which provides further flexibility for optimization
of its consumption across time. We denote by Bi the battery
capacity, by bi(t) the energy level of the battery at time t,
and by ri(t) the power (energy per period) charged to (when
ri(t) ≥ 0) or discharged from (when ri(t) < 0) the battery at
time t. Assume that battery power leakage is negligible. Then
we model the dynamics of the battery energy level by

bi(t) =

t∑
τ=1

ri(τ) + bi(0) (1)

Battery usually has an upper bound on charge rate, denoted by
rmaxi for customer i, and an upper bound on discharge rate,
denoted by −rmini for customer i. We thus have the following
constraints on bi(t) and ri(t):

0 ≤ bi(t) ≤ Bi, rmini ≤ ri(t) ≤ rmaxi (2)

When the battery is discharged, the discharged power is used
by other electric appliances. of customer i It is reasonable to
assume that the battery cannot discharge more power than the
appliances need, i.e., −ri(t) ≤ ∑

a∈Ai
qi,a(t). Moreover, in

order to make sure that there is a certain amount of electric
energy in the battery at beginning of the next day, we impose
a minimum on the energy level at the end of control horizon:
b(T ) ≥ γiBi, where γi ∈ (0, 1].
The cost of operating the batter is modeled by a function

Di(ri) that depends on the vector of charged/discharged power
ri := (ri(t), t ∈ T ). This cost, for example, may correspond
to the amortized purchase and maintenance cost of the battery
over its lifetime, which depends on how fast/much/often it is
charged and discharged. The cost function D i is assumed to
be a convex function of the vector r i.

III. EQUILIBRIUM AND DISTRIBUTED ALGORITHM

A. Equilibrium
With the battery, at each time t the total power demand of

customer i is

Qi(t) :=
∑
a∈Ai

qi,a(t) + ri(t) (3)

We assume that the utility company is regulated so that
its objective is not to maximize its profit through selling
electricity, but rather to induce customers’ consumption in a
way that maximizes the social welfare, total customer utility
minus the utility’s cost of providing the electricity demanded
by all the customers. Hence the utility company aims to solve:



Utility’s objective (max welfare):

max
q,r

∑
i

(∑
a∈Ai

Ui,a(qi,a)−Di(ri)

)

−
∑
t

C

(∑
i

Qi(t)

)
(4)

s. t. Ai,aqi,a ≤ ηi,a, ∀a, i (5)
0 ≤ Qi(t) ≤ Qmaxi , ∀t, i (6)
ri ∈ Ri, ∀i (7)

where Qi(t) is defined in (3), the inequality (5) models the
various customer appliances (see Section IV for details), the
lower inequality of (6) says that customer i’s battery cannot
provide more power than the total amount consumed by all i’s
appliances, and the upper inequality of (6) imposes a bound
on the total power drawn by customer i. The constraint (7)
models the operation of customer i’s battery with the feasible
set Ri defined by: for all t, the vectors ri ∈ Ri if and only if

0 ≤ bi(t) ≤ Bi, bi(T ) ≥ γiBi (8)
rmini ≤ ri(t) ≤ rmaxi (9)

where bi(t) is defined in terms of (ri(τ), τ ≤ t) in (1).
By assumption, the objective function is concave and the

feasible set is convex, and hence an optimal point can in
principle be computed centrally by the utility company. This,
however, will require the utility company to know all the
customer utility and cost functions and all the constraints,
which is clearly impractical. The strategy is for the utility
company to set prices p := (p(t), t ∈ T ) in order to induce
the customers to individually choose the right consumptions
and charging schedules (qi, ri) in response, as follows.
Given the prices p, we assume that each customer i

chooses its own power demand and battery charging schedule
(qi, ri) := (qi,a(t), ri(t), ∀t, ∀a ∈ Ai) so as to maximize
its net benefit, the total utility from operating appliances a
at power levels qi,a minus the cost of battery operation and
electricity, i.e., each customer i solves:
Customer i’s objective (max own benefit):

max
qi,ri

∑
a∈Ai

Ui,a(qi,a)−Di(ri)−
∑
t

p(t)Qi(t) (10)

s. t. (5)− (7)

Note that an optimal solution of customers i depends on
the prices p := (p(t), t ∈ T ) set by the utility company. We
denote it by (qi(p), ri(p)) := (qi,a(t; p), ri(t; p), ∀t, ∀a ∈ Ai);
similarly, we denote an optimal total power by Q i(p) :=
(Qi(t; p)) defined as in (3) but with optimal qi,a(p) and ri(p).
Definition 1: The prices p and the customer demands

(q, r) := (qi, ri, ∀i) are in equilibrium if (q, r) = (q(p), r(p)),
i.e., a solution (qi(p), ri(p)) to (10) with prices p that is
optimal to each customer i is also optimal to the utility
company, i.e., maximizes the welfare (4).
The following result follows from the welfare theorem. It

implies that setting the price to be the marginal cost of power
is optimal.

Theorem 2: There exists an equilibrium p∗ and (q∗i , r∗i , ∀i).
Moreover, p∗(t) = C′(

∑
iQ

∗
i (t)) ≥ 0 for each time t.

Proof: Write the utility company’s problem as

max
(q,r)∈X

∑
i

Vi(qi, ri)−
∑
t

C

(∑
i

Qi(t)

)

s. t. Qi(t) =
∑
a∈Ai

qi,a(t) + ri(t), ∀i, t

where Vi(qi, ri) :=
∑
a∈Ai

Ui,a(qi,a)−Di(ri) and the feasible
set X is defined by the constraints (5)–(9). Clearly, an optimal
solution (q∗, r∗) exists. Moreover, there exist Lagrange multi-
pliers p∗i (t), ∀i, t, such that (taking derivative with respect to
Qi(t))

p∗i (t) = C′
(∑

i

Q∗
i (t)

)
≥ 0

Since the right-hand side is independent of i, the utility
company can set the prices as p∗(t) := p∗i (t) ≥ 0 for all
i. One can check that the KKT condition for the utility’s
problem are identical to the KKT conditions for the collection
of customers’ problems. Since both the utility’s problem and
all the customers’ problems are convex, the KKT conditions
are both necessary and sufficient for optimality. This proves
the theorem.

B. Distributed algorithm
Theorem 2 motivates a distributed algorithm where the util-

ity company and the customers jointly compute an equilibrium
based on a gradient algorithm, where the utility company sets
the prices to be the marginal costs of electricity and each
customer solves its own maximization problem in response.
The model is that at the beginning of each day, the utility
company and (the automated control agents of) the customers
iteratively compute the electricity prices p(t), consumptions
qi(t), and charging schedules ri(t), for each period t of the
day, in advance. These decisions are then carried out for that
day.
At k-th iteration:
• The utility company collects forecasts of total demands

(Qi(t), ∀t) from all customers i over a communication
network. It sets the prices to the marginal cost

pk(t) = C′
(∑

i

Qk
i (t)

)
(11)

and boradcasts (pk(t), ∀t) to all customers over the
communication network.

• Each customer i updates its demand qki and charging
schedule rki after receiving the updated pk, according to

q̄k+1
i,a (t) = qki,a(t) + γ

(
∂Ui,a(qki )
∂qki,a(t)

− pk(t)

)
r̄k+1
i (t) = rki (t)− γ

(
∂Di(r

k
i )

∂rki (t)
+ pk(t)

)
(qk+1
i , rk+1

i ) =
[
q̄k+1
i , r̄k+1

i

]Si

(12)

where γ > 0 is a constant stepsize, and [·]Si denotes
projection onto the set Si specified by constraints (5)-
(7).

When γ is small enough, the above algorithm converges
[12].



IV. DETAILED APPLIANCE MODELS
In this section, we describe detailed models of electric

appliances commonly found in a household. We separate
these appliances into four types, each type characterized by
a utility function Ui,a(qi,a) that models how much customer
i values the consumption vector qi,a, and a set of constraints
on the consumption vector qi,a. The description in this Section
elaborates on the utility functions Ui,a(qi,a) and the constraint
Ai,aqi,a ≤ ηi,a in the optimization problems defined in Section
III.
1) Type 1: The first type includes those appliances such as

air conditioner and refrigerator which control the temperature
of customer i’s environment.
We denote by Ai,1 the set of Type 1 appliances for customer

i. For each appliance a ∈ Ai,1, T ini,a(t) and T outi,a (t) denote
the temperatures at time t inside and outside the place that
the appliance is in charge of, and Ti,a denotes the set of
timeslots that customer i actually cares about the temperature.
For instance, for air conditioner, T ini,a(t) is the temperature
inside the house, T outi,a (t) is the temperature outside the house,
and Ti,a is the set of timeslots when the resident is at home.
Assume that, at each time t ∈ Ti,a, customer i attains a util-

ity Ui,a(Ti,a) := Ui,a(T
in
i,a(t), T

comf
i,a ) when the temperature

is T ini,a(t). The utility function is parameterized by a constant
T comfi,a which represents the most comfortable temperature for
the customer. We assume that Ui,a(T ini,a(t)) is a continuously
differentiable, concave function of T ini,a(t).
The inside temperature evolves according to the following

linear dynamics:

T ini,a(t)=T ini,a(t− 1) + α(T outi,a (t)− T ini,a(t− 1)) + βqi,a(t)

(13)

where α and β are parameters that specify the thermal
characteristics of the appliance and the environment in which
it operates. The second term in equation (13) models heat
transfer. The third term models the thermal efficiency of the
system; β > 0 if appliance a is a heater and β < 0 if it is
a cooler. Here, we define T ini,a(0) as the temperature T ini,a(T )
from the previous day. This formulation models the fact that
the current temperature depends on the current power draw
as well as the temperature in the previous timeslot. Thus the
current power consumption has an effect on future temper-
atures [1], [9], [2]. For each customer i and each appliance
a ∈ Ai,1, there is a range of temperature that customer i takes
as comfortable, denoted by [T comf,mini,a , T comf,maxi,a ]. Thus we
have the following constraint

T comf,mini,a ≤ T ini,a(t) ≤ T comf,maxi,a , ∀t ∈ Ti,a (14)

We now express the constraints and the argument to
the utility functions in terms of the load vector q i,a :=
(qi,a(t), ∀t). Using equation (13), we can write T ini,a(t) in terms
of (qi,a(τ), τ = 1, . . . , t):

T ini,a(t) = (1− α)tT ini,a(0) +
t∑

τ=1

(1− α)t−ταT outi,a (τ)

+
t∑
τ=1

(1− α)t−τβqi,a(τ)

Define T ti,a := (1−α)tT ini,a(0)+
∑t
τ=1(1−α)t−ταT outi,a (τ),1

we can further write T ini,a(t) as

T ini,a(t) = T ti,a +

t∑
τ=1

(1− α)t−τβqi,a(τ) (15)

With equation (15), the constraint (14) becomes a linear
constraint on the load vector qi,a := (qi,a(t), ∀t): for any
t ∈ Ti,a,

T comf,mini,a ≤ T ti,a +
t∑

τ=1

(1− α)t−τβqi,a(τ) ≤ T comf,maxi,a

(16)

The overall utility Ui,a(qi,a) in the form used in (4) and (10)
can then be written in terms of Ui,a(T ini,a(t), T

comf
i,a ) as2

Ui,a(qi,a) :=
∑
t∈Ti,a

Ui,a

(
T ti,a +

t∑
τ=1

(1− α)t−τβqi,a(τ), T
comf
i,a

)

(17)

which is a concave function of the vector q i,a since
Ui,a(T

in
i,a(t), T

comf
i,a ) is concave in T ini,a(t).

In addition, there is a maximum power qmaxi,a (t) that the ap-
pliance can bear at each time, thus we have another constraint
on the qi,a:

0 ≤ qi,a(t) ≤ qmaxi,a (t), ∀t
2) Type 2: The second category includes the appliances

such as PHEV, dish washer, clothes washer. For these ap-
pliances, a customer only cares about whether the task is
completed before a certain time. This means that the cumula-
tive power consumption by such an appliance must exceed a
threshold by the deadline [5], [4], [3].
We denote Ai,2 as the set of Type 2 appliances. For each

a ∈ Ai,2, Ti,a is the set of times that the appliance can work.
For instance, for PHEV, Ti,a is the set of times that the vehicle
can be charged. For each customer i and a ∈ A i,2, we have
the following constraints on the load vector q i,a:

qmini,a (t) ≤ qi,a(t) ≤ qmaxi,a (t), ∀t ∈ Ti,a,
qi,a(t) = 0, ∀t ∈ T \Ti,a

Q̄mini,a ≤ ∑
t∈Ti,a

qi,a(t) ≤ Q̄maxi,a

where qmini,a (t) and qmaxi,a (t) are the minimum and maximum
power load that the appliance can consume at time t, and Q̄mini,a

and Q̄maxi,a are the minimum and maximum total power draw
that the appliance requires. If we set qmini,a (t) = qmaxi,a (t) = 0
for t ∈ T \Ti,a, we can rewrite these constraints as

qmini,a (t) ≤ qi,a(t) ≤ qmaxi,a (t), ∀t ∈ T

Q̄mini,a ≤ ∑
t∈Ti,a

qi,a(t) ≤ Q̄maxi,a

(18)

The overall utility that customer i obtains from a Type-2
appliance a depends on the total power consumption by a over

1T t
i,a represents the temperature at time t if the appliance a doesn’t exist.

It is determined by outside temperature and not controlled by the customer.
2We abuse notation to use Ui,a to denote two different functions; the

meaning should be clear from the context.



the whole day. Hence the utility function in the form used in
Section III is: Ui,a(qi,a) := Ui,a (

∑
t qi,a(t)). We assume that

the utility function is a continuously differentiable, concave
function of

∑
t qi,a(t).

3) Type 3: The third category includes the appliances such
as lighting that must be on for a certain period of time. A
customer cares about how much light they can get at each
time t. We denote by Ai,3 the set of Type-3 appliances and by
Ti,a the set of times that the appliance should work. For each
customer i and a ∈ Ai,3, we have the following constraints
on the load vector qi,a:

qmini,a (t) ≤ qi,a(t) ≤ qmaxi,a (t), ∀t ∈ Ti,a. (19)

At each time t ∈ Ti,a, we assume that customer i attains a util-
ity Ui,a(qi,a(t), t) from consuming power qi,a(t) on appliance
a. The overall utility is then Ui,a(qi,a) :=

∑
t Ui,a(qi,a(t), t).

Again, we assume Ui,a is a continuously differentiable, con-
cave function.
4) Type 4:: The fourth category includes the appliances

such as TV, video games, and computers that a customer uses
for entertainment. For those appliances, the customer cares
about two things: how much power they use at each time they
want to use the appliance, and how much total power they
consume over the entire day.
We denote by Ai,4 the set of Type-4 appliances and by Ti,a

the set of times that customer i can use the appliance. For
instance, for TV, Ti,a is the set of times that the customer is
able to watch TV. For each customer i and a ∈ Ai,4, we have
the following constraints on the load vector q i,a:

qmini,a (t) ≤ qi,a(t) ≤ qmaxi,a (t), ∀t ∈ Ti,a
Q̄mini,a ≤ ∑

t∈Ti,a
qi,a(t) ≤ Q̄maxi,a

(20)

where qmini,a (t) and qmaxi,a (t) are the minimum and maximum
power that the appliance can consume at each time t; Q̄mini,a

and Q̄maxi,a are the minimum and maximum total power that the
customer demands for the appliance. For example, a customer
may have a favorite TV program that he wants to watch
everyday. With DVR, the customer can watch this program at
any time. However the total power demand from TV should
at least be able to cover the favorite program.
Assume that customer i attains a utility Ui,a(qi,a(t), t) from

consuming power qi,a(t) on appliance a ∈ Ai,4 at time t. The
time dependent utility function models the fact that the resident
would get different benefits from consuming the same amount
of power at different times. Take watching the favorite TV
program as an example. Though the resident is able to watch
it at any time, he may enjoy the program at different levels at
different times.

V. NUMERICAL EXPERIMENTS
In this section, we provide numerical examples to comple-

ment the analysis in the previous sections.

A. Simulation setup
We consider a simple system with 8 households in one

neighborhood that join in the demand response system.
The households are divided into two types evenly. For the
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Fig. 1. Outside Temperature over a day

households of first type (indexed by i = 1, 2, 3, 4), there
are residents staying at home for the whole day; for the
households of second type (indexed by i = 5, 6, 7, 8), there
is no person staying at home during the day time (8am-
6pm). A day starts at 8am, i.e., t ∈ T corresponds to the
hour [7 + t (mod 24), 8 + t (mod 24)]. Each household is
assumed to have 6 appliances: air conditioner, PHEV, clothes
washer, lighting, entertainment,3 and electric battery. The basic
parameters of each appliance used in simulation are shown as
follows.
1) Air conditioner: This appliance belongs to Type 1. The
outside temperature is shown in Figure 1. It captures
a typical summer day in Southern California. For each
resident, we assume that the comfortable temperature
range is [70F, 79F], and the most comfortable temper-
ature is randomly chosen from [73F, 77F]. The thermal
parameters α = 0.9 and β is chosen randomly from
[−0.011,−0.008]. For each household’s air conditioner,
we assume that qmax = 4000wh and qmin = 0wh;
and the utility function takes the form of U i,a(Ti(t)) :=
ci,a − bi,a(Ti,a(t) − T comi,a )2, where bi,a and ci,a are
positive constants. We further assume that the residents
will turn off the air conditioner when they go to sleep. 4
The households of the first type care about the inside
temperature through the whole day; and the other house-
holds care about the inside temperature during the time
Ti,a = {18, · · · , 24, 1, · · · , 7}.

2) PHEV: This appliance belongs to Type 2. We as-
sume that the available charging time, Ti,a =
{18, · · · , 24, 1, · · · , 7}, is the same for all houses.
The storage capacity is chosen randomly from
[5500wh, 6000wh]; and the minimum total charging re-
quirement is chosen randomly from [4800wh, 5100wh].
The minimum and maximum charging rates are 0w and
2000w. The utility function takes the form of U i,a(Q) =
bi,aQ+ ci,a, where bi,a and ci,a are positive constants.

3) Washer: This appliance belongs to Type 2. For the
households of the first type, the available working time
is the whole day; for the other households, the avail-
able working time is Ti,a = {18, · · · , 24, 1, · · · , 7}.
The minimum and maximum total power demands are
chosen from [1400wh, 1600wh] and [2000wh, 2500wh]
respectively. The minimum and maximum working rate
are 0w and 1500w respectively. The utility function

3Here we aggregate different entertainment devices such as TV and PC
effectively as one “entertainment” device.
4Notice that the outside temperature during 23pm-8am in Southern Cali-

fornia is comfortable. It is common that customers turn of air conditioner in
the mid-night.



takes the form of Ui,a(Q) = Q + ci,a, where ci,a is
a positive constant.

4) Lighting: This appliance belongs to Type 3. T i,a =
{18, · · · , 23}, and the minimum and maximum working
power requirements are 200w and 800w respectively.
The utility function takes the form of U i,a(qi,a(t)) =

ci,a−(bi,a− qi,a(t)
q̄ )−1.5, where bi,a and ci,a are positive

constants.
5) Entertainment: This appliance belongs to Type 4. For
the households of the first type, Ti,a = {12, · · · , 23},
Qmaxi = 3500wh, and Qmini = 1200wh; for the other
households, Ti,a = {18, · · · , 24} , Qmaxi = 2000wh,
and Qmini = 500wh. The minimum and maximum
working rate are 0w and 400w respectively. The utility
function takes the form of Ui,a(qi,a(t)) = ci,a− (bi,a −
qi,a(t)
q̄ )−1.5, where bi,a and ci,a are positive constants.

6) Battery: The storage capacity is chosen randomly
from [5500wh, 6500wh] and the maximum charg-
ing/discharging rates are both 1800w. We set γi = 0.5,
and the cost function takes the following form:

Di (ri)

=
(
η1

∑
t∈T (ri(t))

2 − η2
∑T−1
t=1 ri(t)ri(t+1)

+ η3
∑
t∈T (min(bi(t)− δBi, 0))

2 + ci,b

)
where η1, η2, η3, δ and ci,b are positive constants.
The first term captures the damaging effect of fast
charging and discharging; the second term penalizes
charging/discharging cycles;5 the third term captures the
fact that deep discharge can damage the battery. We set
δ = 0.2.6

On the supply side, we assume that the electricity cost
function is a smooth piecewise quadratic function [13], i.e.,

C(Q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c1Q
2 + b1Q+ a1; 0 ≤ Q ≤ Q1

c2Q
2 + b2Q+ a2; Q1 < Q ≤ Q2

...
...

cmQ
2 + bmQ+ am; Qm−1 < Q

where cm > cm−1 > . . . ≥ c1 > 0.

B. Real-time pricing demand response
Let us first see the performance of our proposed demand

response scheme with real-time pricing, without and with
battery.
Figure 2 shows the total electricity demand under the real-

time pricing demand response scheme without battery; and
Figure 3 shows the corresponding electricity allocation for two
typical households of different types. We see that different
appliances are coordinated indirectly by real-time pricing, so
as to flatten the total power demand at different times as much
as possible.

5If r(t) and r(t + 1) have different signs, then there will be a cost. As
long as η2 is smaller than η1, the cost function is a positive convex function.
The second item can also be seen as a correction term to the first term.
6We assume that the batteries are lead-acid type batteries rather than NiCd

batteries.
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Fig. 2. Total electricity demand under the real-time pricing demand response
scheme without battery
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Fig. 3. Electricity demand response for two typical households of different
types without battery. The left panel shows the electric energy allocation for
the household of the first type. The right panel shows the electric energy
allocation for the household of the second type.
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Fig. 4. Total electricity demand under the real-time pricing demand response
scheme with battery
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Fig. 5. Electricity demand response for two typical households of different
types with battery. The left panel shows the electric energy allocation for the
household of the first type. The right panel shows the electric energy allocation
for the household of the second type.



Figure 4 shows the total electricity demand under the real-
time pricing demand response scheme with battery; and Figure
5 shows the corresponding electricity allocation for two typical
households of different types. Those figures show the value of
battery for demand response: it does not only reduce the peak
load but also helps to further flatten the total power demand
at different times.

C. Comparisons among different demand response schemes

In order to evaluate the performance of our proposed
demand response scheme, we consider 3 other schemes. In
the first scheme the customer is not responsive to any price
or cost, just wants to live a comfortable lifestyle; and in the
second and third ones, the customer responds to certain flat
price.
1) No demand response: The customers just allocate their
energy usage according to their own preference without
paying any attention to the price, i.e., they just optimize
their utility without caring about their payment. For
example, the customer sets the air conditioner to keep
the temperature to the most comfortable level all the
time; charges PHEV, washes clothes and watches TV
at the favorite times. The electricity demand over a day
under this scheme is shown by the blue plot in Figure
6.

2) Flat price scheme 1: In this scheme, the customer is
charged a flat price p, such that p =

(1+Δ)
∑

t∈T C(Q(t),t)
∑

t∈T Q(t)

with {Q(t)}t∈T the best response to such a price from
the customers. To find such a price, we run iterations
between the utility company and customers. At each
iteration k = 1, 2, · · · , the utility company set the price
as pk =

(1+Δ)
∑

t∈T C(Qk(t),t)∑
t∈T Qk(t)

and then the customers
will shape their demand in response to such a flat price.
eventually, pk will converge to a fixed point, which is
the flat price we need.7 The electricity demand over a
day under this scheme is shown by the magenta plot in
Figure 6.

3) Flat price scheme 2: In this scheme we use the in-
formation obtained from our proposed real-time pricing
demand response scheme to set a flat price p. We collect
the price {p(t)}t∈T and total power demand {Q(t)}t∈T
information under real time pricing scheme and then
set the flat price as p =

∑
t∈T p(t)Q(t)
∑

t∈T Q(t) . The electricity
demand over a day under this scheme is shown by the
black plot in Figure 6.

Figure 6 also shows the electricity demand response under
the real-time pricing scheme with and without battery. We
see that the real-time pricing demand response scheme is
very effective in shaping the demand: not only the peak load
is reduced greatly, but also the variation in power demand
decreases greatly; and with the integration of the battery, the
peak load and the variation in power demand will be reduced
further.

7In general, such a price may not exist and the iterative procedure described
may not converge.
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Fig. 6. Electricity demand response under different schemes

TABLE I
DEMAND RESPONSE WITHOUT BATTERY

No
Demand
Re-
sponse

Flat
Pricing
(Scheme
1)

Flat
Pricing
(Scheme
2)

Real-
time
Pricing;
no
Battery

Real-
Time
Pricing;
with
Battery

Load
Factor

0.3587 0.4495 0.4577 0.7146 0.8496

Peak De-
mand

18.8 kwh 14.7 kwh 13 kwh 8.76 kwh 7.29 kwh

Total De-
mand

162 kwh 158 kwh 153 kwh 150 kwh 148 kwh

Generation
Cost

$64.41 $45.49 $41.80 $32.82 $31.50

Total
Payment

$137.40a $ 54.59 $58.56 $57.42 $55.69

Customers’
Utility

$212.41 $201.72 $200.14 $198.82 $198.82b

Customers’
Net
Utilityc

$75.01 $147.14 $141.57 $141.40 $143.13

Social
Welfare

$148.00 $156.24 $158.33 $166.00 $167.32

aThe price at each time slot is set as the real-time marginal generation cost.
bWhen there is a battery, a customer’ utility is defined as the benefits the

customer gets from electric appliances minus the battery cost.
cCustomers’ net utility is defined as customers’ utility minus payment.

Table I summarizes the differences among the three pricing
schemes. We see that the real-time pricing scheme can increase
the load factor greatly and save a large amount of generation
cost without hurting customers’ utility; and the integration of
the battery can further increase the load factor and reap larger
savings in generation cost.

D. Battery with different cost

One of the challenges in the integration of battery is its
economic (in)viability because of high battery cost. In order
to study the impact of battery cost on demand response, we
considers three scenarios with high, mild, and low cost, by
choosing different scaling factors (10, 1 and 0.1) for the battery
cost in the objective function. Figure 7 shows the electricity
demand under the real-time pricing scheme with batteries of
different costs. Table II summarizes the differences among
those different scenarios. We see that the economic viability of
the battery is important, and more economically viable battery
will reap more benefits from demand response.
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Fig. 7. Electricity demand response with battery at different costs

TABLE II
DEMAND RESPONSE WITH BATTERY

No Bat-
tery

Battery
(high-
cost)

Battery
(mild-
cost)

Battery
(low-
cost)

Load Factor 0.7146 0.7390 0.8496 0.9095
Peak
Demand

8.76 kwh 8.33 kwh 7.29 kwh 6.84 kwh

Total
Demand

150 kwh 148 kwh 148 kwh 149 kwh

Generation
Cost

$32.82 $31.72 $31.50 $31.70

Total
Payment

$57.42 $56.35 $55.69 $55.99

Customers’
Utilitya

$198.82 $198.55 $198.82 $199.42

Customers’
Net Utilityb

$141.40 $142.92 $143.13 $143.43

Social Wel-
fare

$166.00 $166.84 $167.32 $167.69

aA customer’ utility is defined as the benefits the customer gets from electric
appliances minus the battery cost.
bA customer’ utility is defined as the customer’s utility minus the payment.

E. Performance scaling with different numbers of households

In order to study the effect of the system size on the perfor-
mance of our demand response scheme, we simulate systems
with the number of customers being N = 2, 4, 6, · · · , 24.
Figure 8 summarizes three interesting characteristic factors
for the demand response systems with different numbers
of households. We see that as the number of households
increases, the load factor will first increase till a maximum
value and then decrease a bit and finally level off; but the
peak load and total demand at each household will decrease
and finally level off. This shows that as the number of the
households increases, our demand response scheme will reap
more benefits but the gain will eventually saturate.

VI. CONCLUSION

We have studied optimal demand response based on utility
maximization in power networks. We consider households that
operate different appliances including PHEVs and batteries
and propose a demand response approach based on utility
maximization. Each appliance provides a certain benefit de-
pending on the pattern or volume of power it consumes. Each
household wishes to optimally schedule its power consumption
so as to maximize its individual net benefit subject to various
consumption and power flow constraints. We show that there
exist time-varying prices that can align individual optimality
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Fig. 8. Electricity demand response without battery for different power
networks with different number of customers.

with social optimality, i.e., under such prices, when the house-
holds selfishly optimize their own benefits, they automatically
also maximize the social welfare. The utility company can
thus use dynamic pricing to coordinate demand responses to
the benefit of the overall system. We propose a distributed
algorithm for the utility company and the customers to jointly
compute this optimal prices and demand schedules. Finally,
we present simulation results that illustrate several interesting
properties of the proposed scheme.
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