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a b s t r a c t

In this paper, a weighted combination of different demand vs. price functions referred to as Composite
Demand Function (CDF) is introduced in order to represent the demand model of consuming sectors
which comprise different clusters of customers with divergent load profiles and energy use habitudes.
Derived from the mathematical representations of demand, dynamic price elasticities are proposed to
demonstrate the customers’ demand sensitivity with respect to the hourly price. Based on the proposed
CDF and dynamic elasticities, a comprehensive demand response (CDR) model is developed in this paper
for the purpose of representing customer response to time-based and incentive-based demand response
(DR) programs. The above model helps a Retail Energy Provider (REP) agent in an agent-based retail
environment to offer day-ahead real time prices to its customers. The most beneficial real time prices are
determined through an economically optimized manner represented by REP agent’s learning capability
based on the principles of Q-learning method incorporating different aspects of the problem such as
price caps and customer response to real time pricing as a time-based demand response program rep-
resented by the CDR model. Numerical studies are conducted based on New England day-ahead market’s
data to investigate the performance of the proposed model.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation and technique

Smart grids lean on bidirectional interactions between energy
suppliers and different clusters of customers. The smart power grid
follows demand response (DR) programs which produce respon-
sive demand and result in valuable benefits such as better capacity
factors for existing capacities, significant reliability, mitigation of
market power and lower electricity prices for consumers [1,2].
Customers in smart grids intelligently adjust their load profiles
according to some factors like the resultant benefit for the elec-
tricity use, the varying price of energy and the incentives offered by
DR providers for load reduction.

In order to represent the hourly energy consumption of
customers with divergent energy use habitudes and load profiles,
a Composite Demand Function (CDF) is introduced in this paper
which includes different demand vs. price functions such as linear,
exponential, potential and logarithmic demand functions and is
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able to associate with other mathematical representations of
demand. The CDF simulates customers’ hourly demand as a func-
tion of hourly electricity prices. These customers involve in their
preferable DR program based on their expected benefit for the use
of electricity and the features of the offered DR programs. Each
mathematical representation of demand corresponds to an hourly
benefit function which demonstrates the expected benefit for the
use of energy based on the hourly price of electricity, changes in
customer demand and the price elasticity of demand. Here,
a comprehensive demand response (CDR) model is developed in
order to represent the hourly changes in the consumer response
according to the expected benefit and the price elasticity of demand
as well as hourly energy prices, offered incentives and pre-
determined penalties in different DR programs. Furthermore,
instead of using fixed price elasticities, dynamic price elasticities
are derived here based on the main definition of self elasticity.
Dynamic price elasticities are employed in organizing the CDR
model.

This model is applied here in simulating day-ahead Real Time
Pricing (RTP) as a time-based DR program in an electricity retail
market. The competitive retail market composed of intelligent,
independent and communicative players like Distribution System
Operator (DSO), Distributed Generators (DGs), Retail Energy
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Nomenclature

The main notations used throughout the paper are stated
below for quick reference. Other symbols are defined
throughout the text as required.
a, b Coefficients of demand vs. price functions
BC(d(h)) Customer’s obtained benefit from consuming the

hourly demand of d(h) ($)
BREP(p(h)) Retail energy provider’s obtained benefit from

selling energy at hourly price of p(h) ($)
d(h) Customer’s hourly demand as a function of the

hourly price (MWh)
DR(h) Customer’s hourly demand in response to a DR

program (MWh)
E(h) Dynamic price elasticity of demand
inc(h) Hourly incentive per MWh of reduced load

($/MWh)
p(h) Hourly price of electricity offered to the customers

($/MWh)
pen(h) Hourly penalty per MWh of not reducing load

within the contract level ($/MWh)
A symbol FðcF˛flin; ptn; log; expgÞ affecting any of the
above notations indicates its value related to the function
F representing any of linear, potential, logarithmic and
exponential functions. Also, initial values are denoted by zero
subscript.
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Providers (REPs), and different clusters of customers is totally
compatible with a Multi-Agent System (MAS) including some
rational learner agents with cooperation, competition and negoti-
ation interactions. Here, a complete structure of an agent-based
retail energy market is presented and the problem of RTP for
a customer agent is modeled based on the learning capability of an
intelligent REP agent. REP agent’s intelligence appears in the ability
of learning the optimal pricing strategy by experiencing its impact
on demands and consequent retail profit. The CDR model helps the
REP agent to simulate the behavior of RTP program participants.
Hereinafter, these customers are referred to as active customer
agent. The learning process is modeled using Q-learning (QL)
approach. In other word, optimum real time prices are determined
through optimizing REP agent’s benefit which is conducted using
an optimization technique extracted from QLmethod. The acquired
hourly benefits can be compared with the benefits resulted from
real time pricing using a heuristic optimization technique like
genetic algorithm (GA). It is assumed that the preliminary energy
demand levels for the active customer agent and day-ahead (DA)
wholesale prices are known. Specifically, we consider a 24 h
horizon for day-ahead RTP.
1.2. Literature review and contributions

Electricity retail markets and DR programs have been focused
by many researchers in recent years. Some have discussed
customers’ participation in different demand response programs
[1e11]. The demand-side response to the offered prices [8e16]
and electricity procurement for large consumers [17] are other
subjects of research. Ref. [16] has analyzed the price elasticity of
different categories of customers. References [3,4] have presented
an economic load model based on the price elasticity of demand
and the effect of incentives and penalties of DR programs on the
customer response. Different non-linear benefit/demand func-
tions have been proposed in [7e9]. Schweppe and his co-workers
have developed the concept of spot pricing of electricity to
evaluate the variable costs of electric energy on an hourly basis
and proposed three responsive load models, namely linear,
potential and exponential demand functions [8]. Ref. [9] has
modeled customers’ response to the optimal real time prices for
the electricity utilizing different mathematical load models.
Adjusting the hourly load level of a given consumer in response
to hourly electricity prices is modeled in ref. [10]. The latter study
applies up/down ramping rates to model changes in customer
load. Ref. [14] has presented an acceptance function based on the
acceptable energy costs for different clusters of customers. Also,
ref. [15] has modeled the customer’s behavior against the offered
fixed prices for monthly bilateral contracts using a type of market
share function. In the previous works, the load curve has been
divided into separate periods such as peak, off-peak and valley
hours and predetermined price elasticities are considered for the
purpose of evaluating hourly changes in customer’s demand. To
the best of our knowledge, despite of applying the concept of
price elasticity of demand in technical literature, there is no sign
of adopting demand models in order to extract the price elas-
ticities from demand functions based on the main definition of
elasticity.

Awide range of agent theory applications have been reported in
power engineering studies from long term planning to real time
operation [18e22]. Ref. [20] has presented a general model of the
interaction among competitor retailers and heterogeneous
consumers on a MAS basis using QL approach to model the
behavior of the players.

This paper presents an innovative approach in modeling
customer’s behavior in response to different DR programs and
employs the developed CDR model in day-ahead real time pricing
in an agent-based retail environment using an optimization tech-
nique which is based on the principles of QL method in a gradual
trial-and-error process composed of pricing and experiencing
customers’ response. The main contributions of the paper are
outlined in the following:

� A continuous, differentiable composite demand model
composed of weighted demand functions is introduced in
which the weights of demand models are determined accord-
ing to the results of regression-based demand curve fittings.
The CDF can be employed to represent the demand model of
almost all consuming sectors due to the possibility of adjusting
the weighting coefficients using the historical data of imple-
menting DR programs for the target population of customers.

� Dynamic self elasticities are introduced which are extracted by
differentiating demand functions based on the main definition
of price elasticity. These hourly elasticities are employed in
modeling customer response instead of predetermined values
of elasticity applied in previous works.

� A comprehensive demand response model based on the
proposed CDF and dynamic price elasticities is developed
which represents the hourly changes in the customer’s
demand according to his/her load level, the customers’
demand model and dynamic price elasticities of demand as
well as the offered prices, incentives and penalties in different
DR programs.

1.3. Paper structure

The remaining parts of the paper are structured as follows.
Section 2 presents modeling of customer response to DR programs
based on the proposed CDR model. Section 3 is on day-ahead real
time pricing for active customer agent. Section 4 is assigned to the
numerical studies. Finally, Section 5 concludes the paper.



Fig. 1. Different mathematical functions of demand vs. price.
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2. Modeling customer response to DR programs

This section is devoted to the modeling of customers’ partici-
pation in different DR programs. Customers in smart power grids,
adjust their energy consumption based on the following main
factors:

� How does the customer use the electricity and how much
benefit does it acquire for him/her?

� How much does the electricity cost?
� Which demand response programs can he/she participate in?
How much incentive does the customer receive for the load
reduction and how much does he/she have to pay for not
committing to the obligations addressed in the adopted DR
program?

DR programs are categorized in two groups of time-based and
incentive-based programs [4]. Time-based programs encourage
customers to adjust their load profiles according to the varying
prices of the electricity while the incentive-based ones provide
motivative payments for the customers who reduce electricity use
at certain hours. Participation of customers in different DR
programs is mathematically modeled based on the customer’s
obtained benefit for the use of electricity as well as the offered
incentives and the specified penalties.

2.1. Demand and benefit functions

Different representations of demand vs. price have been
addressed in previous works [7e9,23]. Fig.1 shows linear, potential,
logarithmic and exponential representations of demand vs. price
function. Linear demand function (i.e.dlinðhÞ ¼ alin þ blinpðhÞ) is the
simplest and one of the most widely used models of the responsive
load [9] which illustrates the customer’s demand as a linear func-
tion of price. Customer’s benefit from the use of electricity corre-
sponding to linear demand function has been addressed in ref.
[3,4,7e9] as follows:

BC
�
dlinðhÞ

�
¼Blin0 ðhÞ þ p0ðhÞ

h
dlinðhÞ � dlin0 ðhÞ

i

�
(
1þ dlinðhÞ � dlin0 ðhÞ

2EðhÞdlin0 ðhÞ

) (1)
Potential demand function is awidely usedmodel with different
versions of representation ðe:g: dptnðhÞ ¼ aptnðpðhÞÞbptn Þ. Ref. [7]
has proposed customer benefit function corresponding to poten-
tial demand function as the following:

BC
�
dptnðhÞ

�
¼ Bptn0 ðhÞ þ p0ðhÞdptnðhÞ

1þ E�1ðhÞ

 
dptnðhÞ
dptn0 ðhÞ

!E�1ðhÞ
(2)

Logarithmic demand function ði:e: dlogðhÞ ¼ alog þ blogln ðpðhÞÞÞ
corresponds to benefit equation as represented by Eq. (3) [8].

BC
�
dlogðhÞ

�
¼Blog0 ðhÞ þ p0ðhÞdlog0 ðhÞEðhÞ

�
(
exp

 
dlogðhÞ � dlog0 ðhÞ

EðhÞdlog0 ðhÞ

!
� 1

)
(3)

The exponential demand function ði:e: dexpðhÞ ¼ aexpexp
ðbexppðhÞÞÞ has been proposed by Schweppe et al. [7,8]. The corre-
sponding benefit function has been illustrated as:

BC
�
dexpðhÞ� ¼Bexp0 ðhÞ þ p0ðhÞdexpðhÞ

�
(
1þ 1

EðhÞ

"
ln

 
dexpðhÞ
dexp0 ðhÞ

!
� 1

#)
(4)

2.2. Economic responsive load model according to the offered
incentives and penalties

An economic responsive load model has been proposed in [3,4]
which represents the impacts of participating in a time-based and/
or an incentive-based DR program on the customer’s load profile.
Here, the model represented in [3,4] is used as the basis responsive
load model to structure the comprehensive demand response
model. If the customer’s obtained benefit for consuming the hourly
demand of d(h) be represented by BC(d(h)), then the customer’s
benefit through energy consumption together with participating in
DR program (S(d(h))) will be as follows [3,4]:

SðdðhÞÞ ¼ BCðdðhÞÞ�dðhÞ�pðhÞþ incðhÞ�ðd0ðhÞ�dðhÞÞ�penðhÞ
�½CLðhÞ�ðd0ðhÞ�dðhÞÞ�

(5)

where CL(h) denotes the obligated level of hourly load reduction in
accordance with the DR contract. The customer’s maximum benefit

would be determined by
vSðhÞ
vdðhÞ ¼ 0 which results in:

vBCðdðhÞÞ
vdðhÞ ¼ incðhÞ þ pðhÞ þ penðhÞ (6)

Eq. (6) addresses differentiating the benefit function for the
purpose of modeling customer response. Adopting the linear model
of customers’ demand, the benefit function in the above equation
has been substituted by Eq. (1) in [3,4] which has resulted in Eq. (7).

p0ðhÞ
"
1þ dlinðhÞ � dlin0 ðhÞ

EðhÞdlin0 ðhÞ

#
¼ incðhÞ þ pðhÞ þ penðhÞ (7)

Consequently,

dlinðhÞ ¼ dlin0 ðhÞ
�
1þ EðhÞpðhÞ � p0ðhÞ þ incðhÞ þ penðhÞ

p0ðhÞ
�

(8)
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Eq. (8) represents the hourly changes in customer demand
according to the adopted time-based and/or incentive-based
DR program in which he/she participate. Avoiding any
conflict between the demand vs. price functions
ði:e: dF ðhÞ ¼ FðpðhÞÞ;cF˛flin; ptn; exp; loggÞ and the customers’
demand functions in response to different DR programs, hereinafter
the demand response functions are referred to as DRF ðhÞ.

However, the economic responsive load model can be
employed in simulating the behaviors of customers whose elec-
tricity demand may be represented by each of mathematical
functions (i.e. linear, potential, logarithmic, exponential and other
functions whichever would be proposed in future demand
studies). Eq. (9) illustrates the results of differentiating the benefit
functions in accordance with the above mentioned demand
models.
vBC
�
dF ðhÞ

�
vdF ðhÞ ¼

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

p0ðhÞ
"
1þ dlinðhÞ � dlin0 ðhÞ

EðhÞdlin0 ðhÞ

#
if dF ðhÞ ¼ dlinðhÞ

p0ðhÞ
 
dptnðhÞ
dptn0 ðhÞ

!E�1ðhÞ
if dF ðhÞ ¼ dptnðhÞ

p0ðhÞexp
 
dlogðhÞ � dlog0 ðhÞ

EðhÞdlog0 ðhÞ

!
if dF ðhÞ ¼ dlogðhÞ

p0ðhÞ
"
1þ 1

EðhÞ ln
 
dexpðhÞ
dexp0 ðhÞ

!#
if dF ðhÞ ¼ dexpðhÞ

(9)
Assuming particular EF ðhÞ for BCðdF ðhÞÞ, substituting
vBCðdF ðhÞÞ
vdF ðhÞ in Eq. (6) and solving the equations for dF ðhÞ result in

the corresponding demand response models as follows:
DRF ðhÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

dlin0 ðhÞ
�
1þ ElinðhÞpðhÞ � p0ðhÞ þ incðhÞ þ penðhÞ

p0ðhÞ
�

if DRF ðhÞ ¼ DRlinðhÞ

dptn0 ðhÞ


pðhÞ þ incðhÞ þ penðhÞ

p0ðhÞ
�EptnðhÞ

if DRF ðhÞ ¼ DRptnðhÞ

dlog0 ðhÞ
�
1þ ElogðhÞln



pðhÞ þ incðhÞ þ penðhÞ

p0ðhÞ
��

if DRF ðhÞ ¼ DRlogðhÞ

dexp0 ðhÞexp


EexpðhÞpðhÞ � p0ðhÞ þ incðhÞ þ penðhÞ

p0ðhÞ
�

if DRF ðhÞ ¼ DRexpðhÞ

(10)
Eq. (10) demonstrates the behaviors of customers whose elec-
tricity demand is represented by dF ðhÞ in response to the time-
based and/or incentive-based DR program in which they partici-
pate. Time-based DR programs encourage the participants to
modify their electricity consumption by means of varying energy
prices. Therefore, there are no incentives/penalties in these
programs. In order to model customer response to time-based DR
programs, it is necessary to set incðhÞ ¼ 0; penðhÞ ¼ 0 in the
above equation. Similarly, simulating customer response to
incentive-based DR programs makes it essential to set
pðhÞ ¼ p0ðhÞin DRF ðhÞ.

2.3. Dynamic price elasticities

Ref. [3,4,9] have employed the price elasticity of demand as
fixed values and studied demand response models substituting
those assumed values as E(h) in demand functions. These price
elasticities are independent from demand functions. However as
represented in Eq. (11), the main definition of price elasticity
implies differentiating the demand vs. price function. Therefore, if
a customer’s demand is modeled by a mathematical function, its
price elasticity will be also defined based on the adopted model
referring to Eq. (11) as the basic definition.

EðhÞ ¼ p0ðhÞvdðhÞ
d0ðhÞvpðhÞ

(11)

Differentiating a demand function leads to the hourly price
elasticities according to the adopted demand model. Here, the
hourly elasticity is referred to as dynamic price elasticity and
applied in its corresponding benefit function. Setting

EF ðhÞ ¼ p0ðhÞvdF ðhÞ
dF0 ðhÞvpðhÞ

for each demand model and solving it for

dF ðhÞ ¼ FðpðhÞÞ;cF˛flin; ptn; log; expg yields the corresponding
dynamic price elasticity. Eq. (12) represents the dynamic price
elasticities of different demand model.

ElinðhÞ ¼ blin
p0ðhÞ
dlin0 ðhÞ ¼ blin

p0ðhÞ
alin þ blinp0ðhÞ

(12a)

EptnðhÞ ¼
h
aptnbptnðp0ðhÞÞbptn�1

i p0ðhÞ
dptn0 ðhÞ

¼ bptn (12b)

ElogðhÞ ¼
�
blog
p0ðhÞ

�
p0ðhÞ
dlog0 ðhÞ

¼ blog
alog þ blogln ðp0ðhÞÞ

(12c)

EptnðhÞ ¼ �aexpbexpexp�bexpp0ðhÞ�	 p0ðhÞ
dexp0 ðhÞ ¼ bexpp0ðhÞ (12d)
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2.4. Comprehensive demand response model

In different studies addressed in the literature review, various
types of customer demand functions have been proposed and
applied in representing customer response. The load profiles of each
customer reflect his/her energy use style. Although the mentioned
demand functions exhibit similar trends for intermediate prices,
however divergent customer demands are demonstrated by them
for prices out of the intermediate range. Even unrealistic customer
benefits for very small values of demand are evaluated bynon-linear
benefit functions. Also, linear demand function indicates a price cap
above which the customers curtail their entire electricity load [9].
Despite these shortcomings, differences in the customers’ energy
consuming habitudes and purposes can be modeled by different
demand/benefit functions. For example, potential demand function
may represent the behavior of customerswho consume energyeven
at high prices due to their loads of high importance. Also, linear
function models the responses of customers with interruptible
loads. Therefore, as it is shown in Eq. (13), a composite demand
model based on a weighted combination of different demand
functions is proposed so as to better represent the demand function
of a consuming group with diverse load profiles.

dðhÞ¼wlind
linðhÞþwptndptnðhÞþwlogd

logðhÞþwexpdexpðhÞ (13)

where, wF denotes the assigned weight to the respected demand
function according to the studies on the historical load profiles in
the consuming sector. Determining the weighting coefficients in
the proposed CDF is addressed in Section 2.5. As illustrated by Eq.
(14), substituting dF ¼FðpðhÞÞ in Eq. (13) yields the proposed CDF
as a function of hourly prices.

dðhÞ ¼wlin½alinpðhÞþblin�þwptnaptnðpðhÞÞbptnþwlog

h
alog

þblogln ðpðhÞÞ
i
þwexpaexpexp

�
bexppðhÞ

�
(14)

As mentioned before, expanding the responsive load model
proposed in [3,4] results in Eq. (10) as the mathematical representa-
tions of customer participation in DR programs according to the
adopteddemandmodels.Corresponding tothedefinitionof composite
demand model, the behavior of a DR program participant society
whose demand function ismodeled using Eq. (14), can be represented
by a weighted combination of customer response models as:

DRðhÞ¼wlind
lin
0 ðhÞ

�
1þElinðhÞpðhÞ�p0ðhÞþincðhÞþpenðhÞ

p0ðhÞ
�

þwptnd
ptn
0 ðhÞ



pðhÞþincðhÞþpenðhÞ

p0ðhÞ
�EptnðhÞ

þwlogd
log
0 ðhÞ

�
1þElogðhÞ

�
ln


pðhÞþincðhÞþpenðhÞ

p0ðhÞ
�
�

þwexpd
exp
0 ðhÞexp



EexpðhÞpðhÞ�p0ðhÞþincðhÞþpenðhÞ

p0ðhÞ
�
(15)

According to the concept of dynamic price elasticities, Eq. (12)
should be substituted in Eq. (15). Therefore, the customers’
response to the adopted DR program which appears in their
modified demand will be as:
DRðhÞ ¼ wlind
lin
0 ðhÞ

�
1þ blin

pðhÞ � p0ðhÞ þ incðhÞ þ penðhÞ
alin þ blinp0ðhÞ

�
þwptnd

þwlogd
log
0 ðhÞ

"
1þ blog

alog þ blogln ðp0ðhÞÞ
�
ln


pðhÞ þ incðhÞ þ

p0ðhÞ
þwexpd

exp
0 ðhÞexp �bexp½pðhÞ � p0ðhÞ þ incðhÞ þ penðhÞ��
Eq. (16) represents the comprehensive demand response
model which is applicable in evaluating customer response to
different types of DR programs according to the customer’s load
level, his/her demand model and dynamic price elasticities of
demand as well as the offered prices, incentives and penalties
corresponding to the DR contract. The proposed process of
providing composite demand function and the CDR model is
illustrated in Fig. 2.

2.5. Weighting coefficients

Expanded DR implementation is a result of coordinated actions
along the electricity supply chain including regulators, system
operators and load-serving entities (local distribution companies
and REPs). These entities cooperate in implementing DR programs
from regulating supportive market rules to supplying communica-
tion technologies and encouraging customers to participate in DR
programs [2]. Suppose that one of these DR providers aims at eval-
uating the response of a consuming sector to each of DR programs.
One of the suitable tools widely used in power system studies
especially for thepurposeofmodeling loadprofiles is the regression-
based curve fitting technique [24]. Fitting process requires a para-
metric model that relates the response data to the predictor data
with one or more coefficients. In the regression approach, the rela-
tionship between available historical data and demand response
models are formulated as linear/non-linear equations.

In order to model the customer response to DR programs, it is
necessary to determine aF ; bF coefficients of the demand func-
tions; dF ðhÞ ¼ FðpðhÞÞ at the first stage, and then associate proper
weighting coefficients (wF ) at the second stage. The requisite
coefficients are extractible through fitting DRF ðhÞ to the historical
data of implementing the DR program as follows:

yk ¼ DRF ðhÞ þ e (17)

where yh denotes the kth sample of the historical data related to the
implementation of the concerned DR program. DR providers have
to conduct the process of fitting DRF ðhÞ;cF;˛flin; ptn; log; expg to
the historical customer response curves separately for each type of
demand function. Here, the coefficients are estimated by the least
squares method (LSM) through fitting each of DRF ðhÞ functions for
the whole historical data in four independent regression proce-
dures associated to linear, potential, logarithmic and exponential
demand response models. The next stage is to fit the proposed CDR
model to the historical data so as to determine the best weighting
coefficients ðwF Þ through LSM-based solution of Eq. (18).

yk ¼
X

F˛flin;ptn;log;expg
wFDRF ðhÞ þ e (18)

As it is shown in Eq. (18) the customer response is modeled as
a linear combination of (not necessarily linear) functions of the
predictors, plus a random error e. Fig. 3 shows the regression-based
process of extracting demand response models from the historical
data of DR implementation.
ptn
0 ðhÞ



pðhÞ þ incðhÞ þ penðhÞ

p0ðhÞ
�bptn

penðhÞ�
# (16)
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Fig. 2. Extracting CDF and CDR model from individual demand functions.
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Based on the benefit functions (Eqs. (1)e(4)) and the economic
responsive load model (Eq. (6)), customer response to all types of
DR programs was represented by Eq. (10). Furthermore, the
behavior of a DR program participant group was simulated by the
CDR model. The first stage provides individual demand response
functions (i.e. DRF ðhÞ for DR provider while the second stage
results in a comprehensive DR model (i.e. DR(h)) for the purpose of
representing the behavior of a group of customers facing the hourly
Stage 2 

Coefficients of Demand functions      

Stage 1 

Weighting    coefficients

Historical data of 
DR implementation 

LSM-based solution of LSM-based solution 
of

LSM-based solution 
of 

LSM-based solution 
of

,

LSM-based solution of  

Fig. 3. The regression-based process of extracting coefficients.
changes in the electricity price and/or the offered incentive
payments for load reduction. Determining aF ; bF coefficients of the
demand functions and weighting coefficients (wF ) in separate
stages, makes it possible to compare the performances of individual
demand response functions and the weighted combination of
them, in predicting customer response to the adopted DR program.
The composite demand function and the CDR model utilize the
associated weights in order to better represent the behavior of
participant customers with divergent load profiles and energy
consumption habitudes. The demand-side reaction to DR programs
in almost all consuming sectors can be represented by the proposed
CDR model due to the possibility of adjusting the weighting
coefficients using the regression-based historical data fitting
approaches.

3. Day-ahead real time pricing based on CDR model of
customer response

As mentioned before, in smart grids active customers receive
real time pricing information and adjust their effective demands
accordingly. As shown in Eq. (16), the CDR model represents the
hourly changes in customer’s demand according to the DR program
in which he/she enroll. This section is devoted to retailing inter-
relation between active customer agent and its relevant REP agent
in an agent-based retail market environment.

3.1. Agent-based retail environment

A complete structure of an agent-based electricity retail
market is depicted in Fig. 4 including five defined types of
heterogeneous communicating agents. We consider a pool-based
wholesale market in which Distributed Generators (DGs) offer
their generation as well as large scale power plants. REP agents
are economic enterprises which enroll electricity customers, offer
various demand response programs and encourage them to hold
next contracts so as to gain as much profit as possible through
marketing activities. Assigning an agent to each customer is the
most exact representation of the consuming side in the retail
market. However, due to dimensionality problem, in the
proposed agent-based environment it is considered that for each
cluster of customers an agent be assigned. From REP point of
view, they are categorized according to their adopted pricing
schemes. As it can be seen in Fig. 4, there are two customer
agents corresponding to pricing patterns with predetermined
rates like fixed and TOU prices (inactive customer agent) and real
time pricing pattern (active customer agent). Customers of active
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customer agent usually purchase a portion of their demand
through bilateral contracts and then bid in day-ahead and spot
markets to procure their surplus electric power need. The active
customers monitor other pricing alternatives and different
provided services and usually participate in a variety of demand
response programs.

However as it is shown in the shaded part of Fig. 4, the focus
of this paper is on the bidirectional RTP interrelation between
active customer agent and one of REP agents which have an
indirect competition interaction with other REPs via customer
response to the offered prices. REP agent’s intelligence appears in
the ability of learning the optimal pricing policy by experiencing
its impact on retailing profit which is modeled using QL
approach.
3.2. RTP model based on customers’ response to the offered real
time prices

In this paper, it is considered that the REP agent purchases
energy in DA market, adopts real time pricing and offers hourly
DA prices to its active customers based on energy procurement
cost, the behavior of competitors, the adopted retail strategy, its
expected benefit, etc. RTP is a time-based DR program in which
participant customers adjust their load profiles according to real
time prices. Therefore, there is no incentive payment offered by
the DR provider or penalty received by it. The REP agent
proposes DA prices and experiences subsequent customers’
reactions by observing active agent’s demand. RTP model is
formulated as:

MaximizepiðhÞB
REPðpiðhÞÞ ¼ DRiðhÞ�ðpiðhÞ�pwðhÞÞ

h¼ 1;2;.;24 & i¼ 1;2;/;L (19a)
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pminðhÞ � piðhÞ � pmaxðhÞ (19c)

where i ¼ 1;2;/; L denotes the number of learning iteration, pi(h)
is the candidate price of electricity to be offered to the active
customer agent in the ith iteration of learning process and DRi(h)
represents the modeled customer response to the offered price.
Hourly price of the electricity in DAwholesale market is denoted by
pw(h) which impresses energy procurement cost for the REP agent.
This model is defined for each of the 24 h of the next day. Note that
in each hour, initial demands are known and DA wholesale price is
forecasted while RTP rate is the variable to be determined. Eq. (19b)
demonstrates the active customer agent’s response to the offered
real time prices (pi(h)) according to its initial load level and initial
retail price of electricity. Constraint (19c) establishes minimum and
maximum limitations for RTP rates according to the predetermined
lower and upper limits for the hourly retail prices.

3.3. QL-based day-ahead real time pricing

The REP agent acts as a learner agent not aware of its envi-
ronment’s mathematical model. It does not know which price to
select in order to maximize its benefit. Therefore, it tries to
discover which options yield the most subsequent rewards or
penalties, gradually. The REP agent can learn from its past expe-
rienced strategies which can be computationally implemented by
using a Q-Learning algorithm. QL is learning how to map situa-
tions to actions so as to maximize a numerical reward signal [25].
In this study, one-step QL is applied as REP agent’s learning
approach so as to reach optimized benefit while satisfying active
customers.

Let S ¼ fs1; s2;.; snsg be the finite set of possible states in RTP
process and A ¼ fa1; a2;.; anag be the finite set of admissible
actions the agent can take where ns and na represent the number of
states and actions in the learning process, respectively. At each time
step ti, the agent senses the current state si˛S and on that basis
selects an action ai ¼ a˛A. In each state, three possible actions are
defined as represented by Eq. (20).

A ¼ faþ; a�; a0g (20a)

where,

piðhÞ/
aþ ðpiþ1ðhÞ ¼ piðhÞ þ DpÞ (20b)

piðhÞ/
a� ðpiþ1ðhÞ ¼ piðhÞ � DpÞ (20c)

piðhÞ/
a0 ðpiþ1ðhÞ ¼ piðhÞÞ (20d)

Here, a combination of soft-max and greedy policies is applied in
pricing procedure. In each stage, based on the adopted policy, an
action is selected. The above mentioned policies are based on Boltz-
manndistribution (Eq. (21)) andmaximumprobabilities, respectively.

pðsi; ai; iÞ ¼ eQi�1ðsi;aiÞ=TiPna
j¼1e

Qi�1ðsi;aiÞ=Ti (21)
The temperature Ti usually decreases during the learning iterations.
Here, the reduction pattern is as the following equation:

Ti ¼ T1ð1� ði� 1Þ=T1Þ þ 1e� 5
T1 ¼ L

(22)

The updated price as a result of the adopted action affects the
retailing beneit value and accordingly leads the agent to a new state
of pricing strategy learning. In this study, three states are
conceivable for the agent, gaining more benefit, less benefit or no
change as represented by Eq. (23).

S ¼ fsþ; s�; s0g (23a)

where,

si ¼
8<
:

sþ ¼ þ1 if BREPðpiðhÞÞ>BREPðpi�1ðhÞÞ
s0 ¼ 0 if BREPðpiðhÞÞ ¼ BREPðpi�1ðhÞÞ
s� ¼ �1 if BREPðpiðhÞÞ< BREPðpi�1ðhÞÞ

(23b)

REP agent receives an immediate reward (ri) which is propor-
tional to the resulted change in its benefit value. Accordingly, the
current state of the agent updates to the new state (siþ1). Eq. (24)
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represents the reward assigned to the action ai from the old state si
which has caused changes in REP agent’s obtained benefit.

ri ¼ 100� siþ1 þ 1e� 3� ðsiþ1 þ 1Þ (24)

The offered reward impresses action-state value function Q(si,ai)
as represented by Eq. (25).

Qðsi; aiÞ ¼ Qðsi; aiÞ þ a½ri þ gmax
a

Qðsiþ1; aÞ � Qðsi; aiÞ� (25)

These functions determine the most probable actions for the
next play and are applied in taking the next action based on the
mentioned policies. A limited number of stages (L) are allowed for
the learning procedure as its termination criterion. The offered
price and the related benefit reach to their final values as the
learning process terminates. The flowchart of the proposed QL-
based method of real time pricing for the active customer agent
is presented in Fig. 5.
Active customer agent 

Customer response 
(Eq. (19b))

REP Agent 

No

No

Initialize

Determine action probabilities based on 
Boltzmann distribution (Eq. (21)) 

Generate a random value 
and select action 

Update the price based on the 
selected action (Eq. (20)) 

Yes 

Select the most probable action 
(greedy policy) 

Update the price based on the 
selected action (Eq. (20)) 

 Calculate benefit function (Eq. (19a))  

Is the price in the 
limited range?

Yes 

Is the price in the 
limited range? 

Fig. 5. The flowchart of the proposed QL
The above pricing process is repeated for the whole day on an
hourly basis in order to determine optimum DA real time prices.

4. Numerical studies

In this study, the time-based RTP program is investigated while
the required data is extracted from the day-head market of New
England, Connecticut [26]. For the similar hours in two consequent
days, it is assumed that the impacts of parameters affecting the
load are ignorable except the price change. Therefore, the histor-
ical data of hourly price and demand in two consequent days may
reflect the impact of varying prices on the modified electricity use
of RTP program participants. Accordingly, the demand and price
data at hth hour of the (ie1)th day can be used as initial demand
and price values for the same hour of ith day. Modeling of
customer participation in RTP program are conducted for two
types of historical demand curves which represent samples from
No
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-based day-ahead real time pricing.
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Fig. 6. Market data, a) winter season (16e19 Feb. 2010), b) summer season (16e19 Aug. 2010).
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the summer and winter load profiles. The historical load data
correspond to the hourly demand and price data for 16e19 Feb.
2010 as the sample data for the winter season, and 16e19 Aug.
2010 as the sample data for the summer season. Demand response
functions (Eq. (10)) and the proposed CDR model are separately
fitted to the historical data and day-ahead real time pricing is
conducted for two target days of 20 Feb. 2010 and 20 Aug 2010.
The performances of individual demand response functions (i.e.
DRF ðhÞ) and the weighted combination of them (i.e. DR(h)) in
predicting customer response to RTP program are compared based
on the demand and price data related to the target days. Historical
market data which are used in fitting process is provided in Fig. 6.
In RTP process, the minimum and maximum retail prices are
considered as pmin(h) ¼ pw(h) and pmax(h) ¼ 1.5 � pw(h). Also, the
assumed parameters in the equations are as the following: a ¼ 0.2,
g ¼ 0.95, L ¼ 1000.

4.1. Demand curve fitting and dynamic price elasticities

In order to evaluate the performance of the proposed CDR
model, it is necessary to find the best fitted mathematical functions
to the historical demand and price data at the first stage and then,
determine proper weighting coefficients so as to compare the
results of predicting customer response based on the structured
DRF ðhÞ;cF˛flin; ptn; log; expg and the proposed DR(h). Fitting
Table 1
Fitting demand functions to the historical data.

Seasons Winter season

Coefficients aF bF dF ¼ F(P)

Linear 209.381 �0.308 dlin(h) ¼ 209.381e0.308P(h)
Potential 294.243 �0.057 dptn(h) ¼ 294.243(P(h))�0.057

Logarithmic 272.045 �13.397 dlog(h) ¼ 272.045e13.397 ln P
Exponential 210.694 �0.001 dexp(h) ¼ 210.694e0.001e p(h)
demand response function to the historical market data results in
estimates of the model coefficients as presented in Table 1.

As it is shown in Fig. 7, dynamic price elasticities of demand are
dependant to demand vs. price functions whose coefficients vary
according to the historical load profiles.

As it is shown in Fig. 7, linear demand function exhibits
greatest absolute values of price elasticity for high rates of elec-
tricity price while the price elasticity of potential demand func-
tion is a fixed value independent from the hourly price of
electricity and logarithmic demand function represents the elec-
tricity demand with intermediate price elasticities. Furthermore,
the summer load shows greater decreases (i.e. higher absolute
elasticities) in comparison with the winter load in the same
electricity prices. It demonstrates the importance of the electrical
devices which are applied in the winter season. This is due to the
wide usage of the heating equipment in the cold region of Con-
necticut in winter days.

4.2. Weighting coefficients and CDR models

Weighted combination of demand functionsmakes it possible to
represent the response of a group of customers composed of
heterogeneous customers with different load profiles. Using data
samples from the winter and summer historical load data, LSM
results in the weighting coefficients presented in Table 2 as the
Summer season

aF bF dF ¼ F(P)

209.429 �0.441 dlin(h) ¼ 209.429e0.441P(h)
209.005 �0.215 dptn(h) ¼ 209.005 (p(h))�0.215

(h) 208.777 �23.566 dlog(h) ¼ 208.777e23.566 ln P(h)
209.565 �0.003 dexp(h) ¼ 209.565e0.003e P(h)



Fig. 7. Price elasticity of demand, a) winter season, b) summer season.

Fig. 8. Winter and summer CDR models.
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associatedweights to the demand response terms in the CDRmodel
(Eq. (16)). Fig. 8 shows the winter and summer CDF models as the
customer response models according to the hourly retail prices.
Table 3
Resulted errors of fitting historical data of customer response and predicting it for
4.3. Evaluating the proposed CDR model

As it was mentioned before, determining the requisite coeffi-
cients of the demand functions and weighting coefficients in
separate stages, makes it possible to compare the performances of
individual demand response functions and the weighted combi-
nation of them, in predicting customer response to the adopted DR
program. At the first stage, each DRF ðhÞ is fitted to the historical
data and is employed in predicting customer response to the RTP
program which would be implemented in target days while the
second stage utilizes the DR(h) for the purpose of representing
customers’ historical behaviors and predicting their response to the
RTP program in target days. Table 3 presents the resulted
percentage errors of fitting DRF ðhÞ;cF˛flin; ptn; log; expg and
Table 2
Weighting coefficients.

DR function Winter season Summer season

Linear 0.496 0.481
Potential 0.0 0.0
Logarithmic 0.031 0.109
Exponential 0.436 0.400
DR(h) to the historical data of implementing RTP program in the
sample days of winter and summer seasons. Furthermore, the
resulted percentage errors of predicting customer response via the
above mentioned DR functions is shown in Table 3.

Investigation of the presented results in Table 3 reveals that the
weighted CDR function leads to better representation of customers’
historical behavior as well as improved prediction of their response
to the RTP program which is implemented in two target days in
comparison with the performances of the individual DR functions.

4.4. Real time pricing for active customer agent

REP agent learns to offer the best prices to its active customers
through QL approach. The offered price and the related benefit
converge simultaneously to the final values as the learning process
reaches to its limit (i.e. iteration no. ¼ L). The price value in the Lth
iteration is considered as the optimum price determined by QL-
based optimization method. However, different values of retail
price are experienced by the REP agent through learning process.
Fig. 9 shows the relative percent difference between the acquired
price in the final iteration and the best experienced price (i.e. the
price which results in the highest value of retailing benefit) in RTP
for two target days in order to demonstrate the accuracy of the
optimum prices obtained via QL-based optimization technique
applied in this paper. As shown in Fig. 9, the relative percent
difference is less than 0.6% for all hours of real time pricing in two
days of winter and summer seasons. The optimum real time prices
which would be offered to the active customer agent in the target
days are presented in Fig. 10.

As it is shown in Fig. 10, the offered prices in the summer day are
much greater than those in the winter day at certain hours. These
hours correspond to the summer peak hours at which the cost to
procure energy is at its highest for the REP agent. Therefore, active
customer agent is charged higher prices for electricity used during
peak hours of the summer day.
the target days via DR functions.

DR function Winter season Summer season

Error of fitting
(%)

Error of
predicting (%)

Error of fitting
(%)

Error of
predicting (%)

Linear 4.2443 10.0396 3.285 5.2505
Potential 4.2913 9.9451 3.9934 5.7665
Logarithmic 4.2949 9.9649 3.865 5.6748
Exponential 4.2476 10.026 3.3854 5.3129
CDR 3.7215 6.4413 3.1686 4.7409
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5. Conclusion

Smart power grids emphasize provision of all customers in
energy market so as to utilize their potentials in improving the
operation of power systems. In order to represent the behavior of
a customer society with divergent energy consumption habitudes
and dissimilar load profileswho participate in various DR programs,
a composite demand model was proposed in this paper including
somemathematical representations of demand curve such as linear,
exponential, potential and logarithmic functions. The model
proposed here, features with the modularity capability which
enables DR providers to model different DR participant customers
due to the fact that the model may be expanded using weighted
combination of othermathematical functions of demandwhichever
would be proposed in future demand studies. The proposed CDF
facilitatesmodeling thedemandmodel of different customer groups
due to the flexible associating appropriate weighting coefficients.
Accordingly, structuring CDF resulted in a composite demand
response model which was called comprehensive DR model due to
the capability of modeling the hourly changes in customer demand
corresponding to the customer’s demand function and the price
elasticity demand as well as the hourly changes in electricity prices,
offered incentives and obligated penalties in different DR programs.
The CDR model is structured based on the customer’s obtained
benefit for the use of electricity and dynamic price elasticitieswhich
were defined and extracted here by differentiating CDF components
based on the main definition of self elasticity. The proposed CDR
model led to better representation of customers’ historical behavior
against RTP program and improved prediction of their response to
this type of DR program in the next days. This model was applied in
simulating day-ahead real time pricing as a time-based DR program
in a multi-agent retail environment. In this paper, the electricity
retail market’s stakeholders have been modeled by intelligent
agents who make decisions and follow their predefined goals. The
most beneficial dynamic prices were determined through REP
agent’s learning process based on principles of Q-learning method.
The QL procedure was adopted in a way to incorporate different
aspects of the problem such as price caps and customer response
represented by the CDR model.
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