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Abstract

As the worldwide use of wind turbine generators in utility-scale applications continues to increase, it will
become increasingly important to assess the economic and reliability impact of these intermittent resources.
Although the utility industry appears to be moving towards a restructured environment, basic economic
and reliability issues will continue to be relevant to companies involved with electricity generation. This
paper is the second in a two-part series that addresses modeling approaches and results that were obtained
in several case studies and research projects at the National Renewable Energy Laboratory (NREL). This
second paper focuses on wind plant capacity credit as measured with power system reliability indices.
Reliability-based methods of measuring capacity credit are compared with wind plant capacity factor. The
relationship between capacity-credit and accurate wind forecasting is also explored.
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Introduction

Capacity credit estimates of wind power plants help generating companies, utility planners, and other
decision-makers evaluate this intermittent resource in the context of other types of power plants. Capacity
credit is the level of conventional generation that can be replaced with wind generation. To perform such
an analysis, it is important to define the way in which one type of resource can be substituted for another.
Most analysts prefer basing such a trade-off on a reliability measure. A common measure of system
reliability is loss-of-load expectation, or LOLE. The LOLE is an indication of the statistically expected
number of times within a given time period that the system could not provide for customer load. If a given
level of wind-generating capacity can be substituted for conventional capacity, holding the reliability level
constant, then we can obtain a measure of wind plant capacity credit.

In Part 1 [1], we examined the overall economics of wind power plants by using production-cost models to
estimate the benefits. The focus of that work is the wind energy displacement value, but other factors were
considered, albeit briefly. In Part 2, the focus is on reliability-based measures of wind power plants.
However, we will also look at operational capacity credits that are based on two power pool rules, and
consider how to maximize the reliability of wind power plants at geographically disperse locations. The
results in this paper are based on hourly data. NREL is undertaking a joint research project to analyze the
impact that wind power plants have on ancillary services, based on wind-power data at time resolutions
down to 1 second. The results from this study are anticipated sometime in 2002. As restructuring continues
to lurch forward, we continue to use the term “utility” in a somewhat generic sense, applying this term to
both the electric utilities of regulated markets and generating companies in restructured markets. Although
there are clear differences in the structure of these companies, it is beyond the scope of this paper to
analyze these differences.
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Capacity Credit

Utilities are often reluctant to assign any capacity credit to wind power plants, largely because of the
intermittent nature of the resource and the perceived difficulties in accurately forecasting wind power
output.  In fact, the capacity value of a wind plant can have several meanings, depending on the context in
which the discussion takes place. Local reliability councils frequently have unit accreditation standards,
which normally cover conventional generators. These capacity accreditations are operationally based, are
designed to ensure the power system’s reliable operation, and are normally based on demonstrations of the
plant’s continuous operation for several hours. (Although transmission and distribution systems also play
an important role in overall reliability assessment, this paper will focus only on generator reliability.) In a
recent NREL study, only two North American Electrical Reliability Council regions were found to
explicitly cover accreditation of wind power plants [2].

This operational accreditation of conventional power plants is not normally based on a reliability measure,
such as effective load-carrying capability (ELCC). ELCC is a way to measure a power plant’s capacity
contributions based on its influence on overall system reliability. Using a measure such as ELCC, all
power plants with a non-zero forced outage rate have an ELCC that is less than rated capacity (barring
unusual plants with artificially low-rated capacity with respect to actual achieved capacity). The ELCC
measure is often used as a way to compare alternative power plants, and can be easily applied to wind
power plants as well. A power plant’s ELCC is typically calculated with an electric system reliability
model or by a production-cost model.

This section discusses operational capacity credit, the impact of accurate wind forecasting on unit
commitment, and reliability-based capacity credit using Elfin. Additional analysis of wind plant capacity
credit can be found in the Sequential Monte Carlo section, below.

Capacity Credit in an Operational Setting

As described by Wan, most reliability councils do not have specific procedures for rating wind power
plants. If a wind power plant cannot claim any operational capacity credit, then other generating resources
must be committed in an amount equal to the operating level for the wind plant for a specific time period.
A wind power plant will have more value if it can replace conventional committed capacity, at least for
some portion of the year. A generating company that owns significant wind capacity and a slow-start
generator, such as coal, will have an incentive to minimize start-ups of the coal plant, because each start-up
has a fixed cost. If wind capacity can be counted on as “firm” for several hours, a potentially expensive
thermal plant start-up might be avoided. This is balanced against the need for a reliable generating system.
If we were to avoid starting a conventional generator during a period that sufficient wind capacity is
expected, and if the wind capacity did not materialize, system reliability would be compromised.

Wan provides some numerical examples of operational capacity credit, as calculated by the Mid-Continent
Area Power Pool (MAPP) and New England Power Pool (NEPOOL) procedures. Each method is applied
to one year of wind data (the minimum allowable for each procedure) and ten years (recommended) of
wind data. The results of Wan’s analysis are shown in Figures 1 and 2. We can conclude from these graphs
that the two rating methods are not all that different, and that wind plants do indeed have capacity credit in
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an operational context. We can also see the effect of using more data in the calculation, which also tends to
minimize differences between the methods. However, it is not clear that these methods provide a scheduler
with the information needed to optimize the commitment of conventional plants. For that, we turn to
predictions of the future.

Figure 1. Hypothetical wind plant operational capacity credit using 1-year actual load
and wind data

Figure 2. Hypothetical wind plant operational capacity credit using 10-year actual load
and wind data
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Wind Plant Capacity Credit and Wind-Speed Forecasting

In an operational setting, the hourly capacity of a wind power plant can be bid into a pool if the wind
plant’s output can be accurately predicted 24 to 48 hours in advance. In states where restructuring is still
under investigation, the unit commitment decision is also made a day or so in advance. Knowing the level
of wind power output in advance can help in both situations. Milligan, Miller, and Chapman [3] showed
significant economic benefits of accurate wind forecasts because the unit commitment decision can
effectively use an accurate wind power forecast throughout the day. NREL is currently working with the
Electric Power Research Institute on a wind-energy-forecasting development and testing program, and is
also conducting independent research on wind forecasting techniques. In the United States, commercial
wind forecasting services are available, and European forecasting models are now being successfully
applied to several wind power plants [4]. Although accurate wind forecasts help with the unit commitment
problem, they may also significantly reduce energy imbalance charges.

The simplest benefit of an accurate wind forecast is that wind-generated energy can be planned for and
used by the utility so the utility avoids the need to consume fuel to produce electricity. Wind can be viewed
as a free fuel. If all of the wind turbine’s output replaces the output of generators that consume the most
expensive fuel, then savings are maximized. This simplified point of view is complicated by constraints
imposed by integrating the wind resource with the rest of the electricity supply system. 

Wind power has value even if forecasts are not accurate. Clearly, the amount of wind energy available at a
given time is independent of the forecast. Unexpected wind power can still be used to displace energy that
is provided by a load-following unit. However, as wind plants continue to become more economically
competitive with conventional energy sources, it is important to correctly assess the capacity value of wind.
A wind resource that cannot be counted on for capacity has a minimal contribution to system reliability. An
accurate forecast allows the utility to count wind capacity and reduce costs without violating reliability
constraints. 

Both commitment and spinning reserve must be considered by utilities when scheduling resources to meet
load, and both affect the value of a wind forecast. Understanding these two processes is helped by a quick
outline of some issues affecting utility resource planning decisions. 

The Value of Wind Forecasting
This discussion follows Milligan, Miller, and Chapman, whose goal was to quantify the potential value of
an accurate wind forecast. Although the original research was based on a regulated environment, the
results have a bearing on restructured markets, or on any electricity market in which buyers and sellers
contract for electricity in day-ahead or several-day-ahead markets. To assess this value, the Elfin model
was applied to utilities A and B (the utility names are not revealed because of prior agreement), and
commitment errors were simulated in such a way as to approximate wind forecast errors. The economic
value of an accurate wind forecast is based on the utility or generating company’s ability to perform
optimal unit commitment based on the forecast. This discussion begins by showing the relationship
between the wind forecast and unit commitment decisions, along with implications for various types of
power plants. This is followed by some modeling results.
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An electric utility or ISO meets instantaneous demand by coordinating output from a variety of generation
sources. Multiple independent generator output must be provided in such a way as to provide electricity to
the distribution grid with the correct frequency and voltage. If a generator fails suddenly, and there is no
compensating action to make up for the lost capacity, the whole grid can fall out of balance, potentially
requiring a system-wide shutdown and restart. To avoid these difficulties, a utility will keep some capacity
spinning in reserve, (i.e., a running generator capable of producing electricity but not providing current to
the grid). If an on-line generator fails, the spinning capacity contributes to the grid and restores balance. 

Although wind turbines are intermittent generators, it is not generally necessary to provide standby
capacity that specifically provides backup to the wind power plant. The principle of diversity and the low
probability of simultaneous outages from multiple power plants have led to calculating spinning reserve
requirements as a function of load or largest contingency. (NREL is currently developing a method that
allocates the system-wide spinning reserve requirement to each power plant in the system, based on its
capacity and forced outage rate [5].) However, deviations from the forecasted level of wind power output
could have an impact on reserves, which implies that the forecast could be beneficial if it prevents a drop
in reserves during unanticipated drops in wind power output.

Commitment issues involve a longer time scale than spinning reserve issues. The amount of lead time
required for a generator to go from a non-operating state to an electricity-producing state varies among
technologies. An example of a “quick-start” unit is a combustion turbine, whose lead time can be measured
in minutes. An example of a “slow-start” unit is a nuclear plant, which requires hours or days of lead time
to bring to an operating state. Once a slow-start unit is operating, it must continue to run or go through a
lengthy shutdown and restart. We refer to a slow-start unit’s generation threshold, the level below which
the unit must be shutdown and restarted, as its minimum output level. Slow-start units are ramped down
during low-load periods, possibly as far as their minimum operating level, and then ramped up to assist in
meeting peaks. Intermediate and peaking units are also ramped up or started, or both, to meet the peak.
This method of operation is called load following.

An electric utility meets loads through a combination of slow- and quick-start capacity. Typically, the
utility must plan at least one day ahead to have sufficient slow-start capacity online to be able to meet the
next daily peak. The process of deciding which slow-start units to operate is known as the unit
commitment problem.

The utility must commit sufficient slow-start capacity to be able to meet as much demand as possible with
low-cost generators. However, committing too much slow-start capacity has a cost. When the system
reaches minimum load conditions, the capacity across the minimum operating levels of committed slow-
start plants may exceed demand, causing the utility to dump or sell excess energy, perhaps at a price below
marginal cost. Utilities are constrained by the lead times required to cool down and restart slow-start units;
they cannot simply turn off slow-start units that are surplus at night and restart them for the next day's
peak. Typically, a utility avoids the problem of having too much slow-start capacity during non-peak hours
by relying on quick-start units to serve peak loads for a few hours each weekday.

In contrast to over-commitment problems, if a utility under-commits (i.e., starts up too few slow-start
units), it will rely excessively on higher cost quick-start energy or purchases to meet peaks. In the extreme
case, the utility may even be short of capacity at the time of system peak.
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Optimized commitment is complicated by intermittent output from a wind resource. If wind generation
represents a significant portion of the total capacity, the utility must balance the risk of the wind resource
being a non-contributor against the risk of committing excess slow-start capacity. An accurate wind
forecast would allow the utility to optimize the amount of slow-start capacity it commits, thus minimizing
the risk of producing either too much or too little low-cost energy.

An accurate forecast could enable a utility to plan its generation schedule by using the wind power forecast
as the “schedule” of wind output. As long as the forecast is accurate, the utility is in an optimal position,
able to integrate wind output without backup or support for the wind resource. An inaccurate forecast,
however, causes problems. If the forecast is too optimistic (i.e., forecasted wind exceeds actual wind), then
the utility finds its reserve margin too low. A capacity deficit could violate minimum reliability constraints
and may cause system costs to be higher than necessary.

Conversely, the reliability target can be exceeded when the forecast is too pessimistic (the forecast wind is
less than the actual wind). In this case, the utility has completed its commitment list, assuming the forecast
wind power level. The actual wind power output is greater than forecast. From a reliability perspective,
units are committed that need not be, resulting in excess spinning capacity. While the excess reliability is
not a problem itself, it does result in a non-optimal schedule of resources and needlessly increases energy
costs.

Modeling the Wind Forecast Scenarios
We modeled differing degrees of accuracy in a wind forecast and measured the total cost of producing
electricity in each scenario. The differences in total cost for each scenario were measured and used to
project the benefits of accuracy in the forecast. All production simulations were carried out for a single
year, and forecast benefits are measured as annual values. There are long-term implications that wind-
forecasting accuracy might have on optimal generation expansion, but they are not explored here.

We developed two methods to analyze the benefit of a wind forecast. The first method, which uses hourly
wind power data, is described here. Details on a second method can be found in the original paper. The
scenario begins with the meteorological forecast, which results in an hourly wind-speed forecast for the
time period in question (on the order of 24-48 hours). These data are used to calculate the hourly wind
power output, which is then given to the utility dispatcher. The power system schedule is then based on the
wind forecast, and decisions are made on which of the conventional units should be committed. Actual
wind power may vary from its predicted value. The extent of the wind forecast error determines the
financial and reliability cost to the utility. If the forecast error is zero, then the utility has planned in an
optimal way.  Penalties occur when errors in forecasting occur, and these penalties increase as a function of
the forecasting error. The modeling attempts to capture these scenarios in as much detail as possible. We
provided Elfin with the hourly wind power forecast, so the model can complete optimal resource
scheduling. The wind forecast is treated as any other scheduled resource and is considered firm. We then
provide Elfin with hourly deviations from the forecast. To capture the best time resolution possible, the
wind resource was modeled as a load modifier. While it would be useful to use the probabilistic modeling
technique discussed above, it was not possible to model forecast errors with that method.

To account for the effects of wind power deviating from the forecast, we assume the utility relies on the
forecast in planning its commitment schedule. Wind power above or below the forecast is not counted
towards the commitment target. In other words, the forecast wind power counts towards commitment,
whereas the deviation from the forecast does not. Among all scenarios with a constant amount of wind
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energy, differences in total production cost are a function of the portion of wind output that was counted on
during the commitment process.

This method is extremely flexible and is a reasonable way to approximate the forecasting error. The
method allows us to separately examine the question of the effects of over-forecasting versus under-
forecasting. As examples, consider these cases. First, suppose that the forecast is completely accurate. That
implies that the non-firm component of wind is zero, and the conventional generators can be scheduled in
an optimal way (ignoring other sources of uncertainty). If the forecast is too high, we reduce actual wind
power from the forecast level, but do not allow commitment to change. Similarly, if the forecast is too low,
we increase available wind power, but do not count this increase towards commitment.

This method could also be expanded so that other forecast error patterns can be introduced. Here, we
assume the forecast error is consistently higher or lower than actual wind output. In reality, forecast errors
are likely to be too high in some hours and too low in others. It is also important to note that, unless
forecast error is explicitly taken into account, it is implicitly assumed to be zero.

For this study, we did not allow Elfin to price any resources at system lambda, because altering the forecast
error tends to change system marginal costs and artificially alters total cost. They also held the load profile
constant, so that differences in the correlation between wind power and load would not influence the
results.

We used a single year of wind data from the High Plains wind site, calculating equivalent power output,
and running the Elfin model. We ran 112 different cases per utility, each of which represents a different
combination of actual and forecast wind power. The actual wind power was simulated at 10% increments
of the historical wind levels. If, for example, the historical wind data resulted in wind output of 100 MW
for the hour, the model was run at 10 MW, increasing by 10 MW, up to 100 MW. For each of these wind
power levels, there are several ways of combining 10% increments of forecast wind and forecast error
values. For example, 50 MW of actual output can be realized by several combinations, such as a 60-MW
forecast and –10-MW forecast error; a 70-MW forecast and –20-MW forecast error, or a 30-MW forecast
and 20-MW forecast error. For the site maximum wind speed, which translates to rated wind plant output,
the forecast error can only be positive. Likewise, for 0 MW actual wind power, the forecast error cannot
exceed 0. However, zero wind output can be achieved with offsetting values of forecast and forecast error:
0 forecast and 0 error; 10 forecast and –10 error, for example.

The method allows us to choose any combination of wind power forecast and forecast accuracy. For
example, during a given hour, the forecast may be for 50 MW of wind, and the actual wind output might
be 80 MW—the forecast error is therefore 30 MW. In an extreme case of a missed forecast, a 100-MW
forecast can be simulated with 0 MW wind (forecast error is 100 MW). In this case, the utility has planned
on 100 MW of wind, but must dip into its reserves to meet the load. Conversely, the utility can plan on 0
MW of wind and receive 100 MW. However, spinning reserve and commitment levels are set in advance,
so the benefit of 100 MW of unplanned wind power is diminished. It is important to note that wind energy
is held constant to assess the value of the forecast. Therefore, the primary impact of the forecast error
enters via the unit commitment logic. It is also important to note that spinning reserve targets were also
held constant in the various scenarios. However, the units that are called on to meet the fixed spinning
reserve target may, in fact, differ from the perfect forecast case because of differences in unit commitment
that arise from differing forecast accuracies.
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To capture commitment effects, the wind resource had to be sizeable enough to cause changes in total
production cost because of changes in the wind plant’s firmness, or reliability. Therefore, the capacity
portion was modeled to yield a constant 4% of effective system peak-coincident firm capacity across all
cases (i.e., 4% of the peak load would be expected to be served by the wind plant). By modeling varying
degrees of forecast accuracy and recording the total cost at the optimal commitment level—holding the
wind energy contribution and all other factors constant—we calculated the change in system variable costs
that were caused only by the change in the forecast accuracy.

Forecast Results
Some of these results are presented in Figures 3 and 4. All the cases show that an accurate wind forecast
does give the most benefit from the wind resource and that inaccurate forecasts reduce benefits. The
direction of the forecast error does influence the benefit reduction for a given utility, but is not constant
between the utilities in this study. The relative costs of over- or under-forecasting will depend on the
tradeoffs faced by each utility (e.g., what is the penalty imposed by the power pool or regulators for under-
committing, as balanced against the cost of over-committing).

This work shows that an accurate wind forecast does have value. Several conclusions can be drawn,
although the specific results depend heavily on the utility’s generator mix, load swings, correlation of wind
to load, and other factors. First, accurate forecasts always have economic value, even at lower levels of
wind output.  Second, even if there is no wind power available, it is in the utility’s best interest to forecast
this event accurately. Third, the results indicate that a forecast that is too high is more costly than one that
is too low for Utility A, but the opposite is true for Utility B.  These results are highly sensitive to
the utility’s contractual and power pool arrangements and should be studied more closely in that context.

Figure 3 assumes that actual wind power output is at 50% of rated capacity for the wind plant. The benefit,
as measured on the vertical axis, shows that with a perfectly accurate forecast (forecast error of zero), there
is about a $54 million benefit provided by the wind plant. This benefit is measured as fuel saving from
conventional units. The diagram shows how this benefit is reduced as the absolute value of the forecast
error increases. In the case of a 50% forecast error, the benefit of the wind plant is reduced to about $50
million.  Therefore, the forecast provides approximately $4 million in benefits. Conversely, a negative 50%
forecast error results in a benefit reduction of about $2 million. The graph in this figure is a typical shape
for the various percentages of wind capacity that were modeled.



9

Figure 3. Effect of forecast error on benefit, Utility A, 50% output

Figure 4 assumes full wind plant output. With full output, it is not possible for the forecast to exceed the
actual wind. Therefore, the graph only shows positive forecast errors (i.e., in all cases, actual output
exceeds forecast output). This graph shows that a forecast error of 90% costs the utility about $12 million.
The consequences of less severe errors can be read from the graph—for example, a 40% forecast error
results in approximately $7.5 million in lost benefits.

Figure 4. Effect of forecast error on benefit, Utility A, full output

The test wind plant has a capacity of 1,250 MW. After accounting for various losses, the net output
capability is 1,006 MW. For such a wind plant, the results indicate that an accurate forecast can be worth
up to about $12 million per year for utility A, and up to $40 million per year for utility B. The difference in
results for the two utilities reflects the differences in costs of the marginal units displaced by wind
generation. A utility that has a relatively large slow-start unit on the margin during low-load periods is
likely to see a larger cost impact from an accurate forecast. Of course, it is extremely unlikely that
forecasting with 100% accuracy can be achieved on average, but this does suggest that it would be
worthwhile for a utility to pursue some reasonable level of forecasting accuracy.
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Forecast Benefits Summary
Forecast benefits will vary according to the utility's load pattern, generation mix, fuel costs, correlation of
load with wind power, and other factors. However, in all the cases analyzed, an accurate wind forecast has
economic benefits. The declining marginal benefit curve from the forced-outage method suggests that the
goal of a wind forecasting project should not be 100% accuracy, but should balance the degree of accuracy
against the degree of benefit derived by that level of accuracy. However, further work in this area is clearly
needed.

This method allows us to distinguish between the impacts of under-forecasting and over-forecasting wind
power. As outlined in the discussion above, the reliability and economic impacts of under- or over-
forecasting may not be symmetric because of differences in the cost structure and consequences of over-
committing and under-committing. Furthermore, power companies typically have marginal cost curves that
increase with output, which also implies that the cost of under-forecasting would likely exceed the cost of
over-forecasting. The benefits of accurate wind forecasting that were calculated are significant, but should
be interpreted as a first approximation of an iterative process. Further improvements in techniques and
using an actual wind-forecasting model could improve the accuracy of these results. It is also important to
note that, given an inaccurate forecast, the only effect of the forecast error is via the utility's commitment
decisions. Therefore, we assume that all wind energy is used by the utility. This means that the economic
benefits measured here may be understated. However, given these caveats, a couple of points can be made.
First, a utility that treats wind generators purely as economical energy resources with no firm capacity
would be the best candidate to invest in some degree of accuracy in a wind forecast. Second, concentrating
wind generators in regions where wind forecasts were maximized for accuracy could bring economies of
scale, resulting in more cost-effective forecasting.

Third, utilities are already managing uncertainty and intermittence in forecasting load, even without using
wind or other intermittent power generators. Weather forecasting plays a role in load forecasting, especially
in areas that experience extreme weather conditions. Many utilities have already invested in weather
forecasting and may be able to leverage existing weather forecasting capabilities in developing wind-
forecasting expertise. Other intermittent, weather-dependent renewable resources, such as solar-powered
generators, could also benefit from accurate forecasting techniques.

To the extent that an improved wind forecast reduces the use of fossil fuels, pollution would also be
reduced. If this cost were internalized by the utility, the economic benefit of the accurate wind forecast
would be increased accordingly.

Wind Plant Capacity Modeling

As electricity markets evolve towards a more competitive structure, the traditional vertical integration of
electric utilities is evolving into separate business units for electricity generation, transmission, and
distribution. Although the precise form of these new industries is not known for certain, it is clear that the
generating industry will continue to evaluate whether or not to build new generators. The companies that
will perform this type of analysis will probably be very diverse, and may include very large generating
companies that have resulted from the many recent mergers and acquisitions, as well as smaller companies
that are currently considered independent power producers. In my judgement, some entity in the brave new
world will continue to be interested in ELCC or other reliability measures to ensure adequacy of the
generating system [6].
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Utilities have historically entered into agreements with each other, buying and selling electricity on the
wholesale market. The structure of these contracts depends on the needs of the parties involved. In some
cases, payment is based only on the quantity of electric energy purchased during the contract period. These
are typically called “energy-only” contracts. In other cases, however, the payment is based, at least in part,
on the capacity that is provided. This type of agreement is generally called a “capacity-only” contract. To
thoroughly evaluate the return on investment, investors must perform calculations that allow them to
estimate long-term capacity sales, whether to retail customers or wholesale customers. In the restructured
markets of the future, it is not clear whether market players will have the technical capability to perform
the capacity and reliability analysis that has historically been done by the traditional utility. Various other
methods have been proposed (see [7] and [8] for discussions) that involve using the capacity factor to
estimate the long-term capacity credit for a wind generating plant.

Generally, energy-only contracts are based on incremental costs such as fuel usage and operations and
maintenance (O&M) costs associated with the increased use of the power plant. However, renewable
energy resources, such as wind and solar use “free” fuel, and have low O&M costs. The owner of a wind
plant who could sell only energy competes with the fuel cost of other plants. These payments must be
sufficient over the life of the wind plant to recover the capital. Currently, incremental energy and O&M
costs are very low, so, as discussed in a previous section, if a solar or wind resource is predicable or
reliable enough, the potential for increased payment based on capacity is important.

Another difficulty arises because of the intermittent nature of renewable resources such as wind and solar. 
During windy periods, fuel is available to drive the wind plant. During lulls, fuel (i.e., the wind) is not
available, and wind plant output will fall, possibly to zero. If a wind plant operator should enter into a
capacity sale agreement during a period in which expected wind output did not occur, there would be a
financial penalty to the seller. The purchaser may not have sufficient resources, and would perhaps be
unable to meet customer loads. Additional purchases or generation would be required to make up the
deficiency. Conversely, if the wind operator were to underestimate the capacity available during a
particular time period, the excess capacity would go unused and unsold, reducing the payments to the wind
plant. In this case, the purchaser would have greater capacity than needed. In cases of high excess capacity,
conventional generators might need to back off, providing a bonus in fuel saving.

The need for accurate capacity assessment is clear. However, the traditional approach involves using
complex electricity-production simulation models, which may incur a significant cost in terms of data
collection, analysis, expertise, and computer time. Various ad hoc approaches have been used to calculate
rough estimates of capacity credit. For example, calculating the capacity factor of the resource over some
relevant time period may provide a good general estimate of capacity credit. However, there are few
studies that explicitly compare the result of this approach with the more rigorous, traditional approach that
is based on sophisticated utility planning models, and none that provide a comparison using alternative
numbers of load hours. The purpose of this discussion is to introduce the ELCC and to evaluate simpler
methods of calculating capacity credit for an intermittent renewable power plant. These methods should be
valuable to a wide audience, including potential investors in, and owners of, renewable power plants, and
utilities that are evaluating renewable resources. This discussion follows Milligan and Parsons [9].
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Methods for Calculating Capacity Credit
Currently, when a utility evaluates additions to its generator capacity, different energy sources are
compared (see Kahn [10] for a discussion of generation project evaluation). Because generator capabilities
vary according to fuel type and the method used to produce electricity, it is helpful to use a measure of
capacity that can be applied to all types of plants. For example, the capacity value of a 100-MW coal plant
might be equivalent to a 75-MW oil plant. A 300-MW (rated) wind plant might provide the same capacity
measure as the 100-MW coal plant.

It is important to link this concept of planning capacity credit to operational capacity credit. Planning
capacity credit is the value given to a generating plant over a long time horizon, and is typically in the
context of utility generation planning (or genco planning), and is the topic addressed here. Operational
capacity credit is the capacity value that could be specified in a transaction between utilities. Over the long
run, we would expect that the average operational capacity credit would approach the long-term value.

Utility Production and Reliability Modeling
The standard techniques used to evaluate the reliability of power systems and how these techniques are
used to measure planning capacity credit are based on Billinton & Allan [11]. Conventional power plants
experience unplanned outages, either because of mechanical or other malfunction. Episodes such as this
are called forced outages. It is unlikely that conventional generators will experience a forced outage
because of fuel shortages. During extended periods of anticipated low loads, generating units can be taken
offline for routine maintenance. There is always a non-zero probability that any single generating unit will
be on forced outage. Taking all such probabilities from each generator allows us to calculate the
probability that enough generator units are on forced outage that the utility will be unable to meet its load.
This probability is the loss-of-load probability (LOLP). Most methods of assessing the capacity credit of a
wind plant are based on LOLE. Of course, the utility’s goal is to keep this probability or expected value as
small as possible, given the trade-off between cost-minimization and reliability. A standard rule-of-thumb
is to maintain a loss-of-load expectation of 1 day in 10 years.

Effective Load-Carrying Capability
Using the concepts and techniques from reliability theory, we want to provide a measure of generating
plant capacity credit that can be applied to a wide variety of generators. Although no generator has a
perfect reliability index, we can use such a concept as a benchmark to measure real generators. For
example, a 500-MW generator that is perfectly reliable has an ELCC of 500 MW. If we introduce a 500-
MW generator with a reliability factor of .85, or equivalently, a forced outage rate of .15, the ELCC of this
generator might be 390 MW. In general, the ELCC value cannot be calculated by multiplying the
reliability factor by the rated plant output—the ELCC must be calculated by considering hourly loads and
hourly generating capabilities. This procedure can be carried out with an appropriate production-simulation
or reliability model.

The electricity production simulation model calculates the expected loss of load. The usual formulation is

)L<CP( ii�
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based on the hourly estimates of LOLP, and the LOLE is the sum of these probabilities, converted to the
appropriate time scale. The annual LOLE can be calculated as

where P() denotes the probability function, N is the number of hours in the year, Ci represents the available
capacity in hour i, and Li is the hourly utility load. To calculate the additional reliability that results from
adding wind generators, we can write LOLE' for the LOLE after wind capacity is added to the system as

where Wi is the wind power output from the wind power plant during hour i. For later sections of this
paper, it will be convenient to rewrite equation (4) to allow for wind power output at several locations:

where Nw is the number of wind sites in the analysis, j indexes Nw, and Wi,j is the wind power output at
hour i from site j. The ELCC of the system is the load that can be supplied at a specified level of risk of
loss of load.

Calculating the ELCC of the wind plant amounts to finding the values Ei for which this equation says that
the increase in available capacity can support Ei more MW of load at the same reliability level that the
original load could be supplied with Ci MW of capacity. To determine the annual ELCC, we simply find
the value Ep, where p is the hour of the year in which the system peak occurs. Because LOLE is an
increasing function of load, given a constant capacity, we can see from equation (4) that increasing values
of Ei are associated with declining values of LOLE. Unfortunately, it is not possible to analytically solve
equation (6) for Ep. The solution for Ep involves running the model for various test values for Ep until the
equality in equation (6) is achieved to the desired accuracy.

Although the level of detail of the input data varies between models, hourly electric loads and generator
data is required to calculate LOLE. Common outputs from these models include various costs and
reliability measures, although cost data are not used to perform system reliability calculations. Some of the
models that are used for these calculations are chronological, and others group related hours to calculate a
probability distribution that describes the load level, such as that described by Milligan [12]. It is useful to
put this discussion in a graphical context. A reliability curve can be plotted by running the reliability
model, altering the load, and plotting the resulting points in a graph as in Figure 5. The upward-sloping
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lines show the increasing risk of not meeting load, as measured with LOLE, that results from load
increases. In the figure, the system load-carrying capability is just under 1,100 MW, assuming a risk level
of 1 day in 10 years. The utility that finds itself above its preferred level of risk would add generation to its
system. Adding a new generator to the model would shift the reliability curve to the right. The level-of-
load increase that can be sustained at the same reliability level is the distance between the two risk curves,
evaluated at the preferred risk level. Later discussion in this paper will use this method to determine the
ELCC of a wind plant.

Figure 5. Reliability curves for calculating the ELCC of a wind plant

Application to Intermittent Resources
An important difference between intermittent and conventional generators is the source of the forced
outage, as described in the reliability model. From a mechanical standpoint, it is common for wind turbines
to have very high availability, often exceeding 0.95. Therefore, the forced outage rate in this case would be
0.05.  However, wind turbines can only generate electricity when the fuel (wind) is available. When this is
accounted for in the model, the forced outage rate of the wind plant might be in the range of 0.50–0.80. A
conventional generator might have an overall forced outage rate of 0.05–0.25, but this rate is likely based
on mechanical availability, not fuel availability.

Capacity credit results depend heavily on what happens during the utility's peak hour or several peak
hours.  Wind speed varies significantly from year to year and from hour to hour. Capacity credit estimates
that are based on a single year of data and modeled without taking this variation into account should be
suspect. Some analysts have corrected for this problem (Percival and Harper [13]), whereas others did not
(Bernow, Biewald, Hall, and Singh [14]). Papers by Billinton, Chen, and Ghajar [15], Milligan [12], and
Milligan and Graham [16] take related approaches that perform multiple simulations of wind speed,
executing the production cost and reliability models over several cases. Ignoring the potential for inter-
annual wind speed variation can be perilous, and can result in significantly over- or under-estimating
capacity credit.
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Simpler Approaches
This discussion has focused so far on standard approaches of measuring power plant capacity credit.
Although reliability models provide the most accurate result, they require significant modeling effort.
Various ad hoc methods for calculating wind plant capacity credit have been proposed, many of them
using the capacity factor over some relevant time period. Related approaches, like those described by Wan,
use the median value of the wind plant over a recent history during the utility peak period. This section will
provide a benchmark of how well various capacity-factor measures can approximate the ELCC, as
calculated by a reliability model.

Application of Alternative Methods
Although we use a wind power plant as an example, these techniques would be equally applicable to other
intermittent technologies. The authors calculated hypothetical wind power output based on 13 years of
hourly wind-speed data from a site in the Great Plains. This study used the Elfin model with one year of
load and generator data from Tri-State Generation and Transmission, Inc.  Tri-State is a non-profit
generation and transmission co-operative utility, supplying wholesale electric power to 33 distribution co-
operatives in Colorado, Wyoming, and western Nebraska (this work occurred prior to Tri-State’s
acquisition of Plains Generation and Transmission). Resources include both Tri-State-owned and jointly
owned coal- and oil-fired generation. Tri-State also purchases power from the Western Area Power
Administration (WAPA) and Basin Electric Power Co-operative (Basin).

Capacity credit calculations were carried out for each of the 13 years of data using the standard ELCC
approach. We then used three alternative methods to calculate wind plant capacity credit. None of these
alternative methods require using either a production cost or reliability model or generating data from
conventional generating sources, although two of these methods do require a single reliability model run.
The first method calculates the capacity factor (defined as the ratio of the average output to the total
output) for the hours during the utility system peak. This calculation was carried out for the top 30% of
hourly peak loads.

The second method also calculates the capacity factor, but uses hours in which the risk of not meeting the
load is highest. These hours are determined by running the reliability model with no wind generation and
calculating the LOLP for each hour of the year. The hours selected by this method generally correspond to
the hours of the highest loads, but differ to the extent that conventional resource availability is not constant
throughout the year. The wind-power output for these hours is then used to calculate the wind plant
capacity factor as an estimate of the wind plant’s capacity credit. These calculations are carried out for up
to 30% of the yearly hours.

The third and final method used the same hours as method two. This final method uses normalized LOLP
values as weights for the average capacity factor. This allows the method to recognize those hours in which
LOLP is more severe and weight them accordingly. The capacity factors are then calculated in the same
way as those in the other approaches.

The wind data used came from a regional air quality monitoring program (RAMP) site in the high plains,
scaled to match average wind speeds from the Altamont Pass region in California. The series spans the
years 1980 to 1992. The wind data collected from this site show a wide inter-annual variation. The highest
simulated energy capture occurred in 1988. Values for other years range from about 72% to about 92% of
the 1988 simulated energy. A caveat to our approach is that several hundred miles separate the utility and
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the wind site, and the utility data is for a single year. This implies that any correlation between loads and
wind is not fully captured. This is a limitation that is likely in practice, because of the relative scarcity of
long-term wind data.

Results
Each calculation method was applied to the full 13-year data set. For each year of wind data and each
method, the wind plant capacity factor was calculated for the top 1%, 2%, . . ., 30% of hours that were
selected by the algorithms described above. Figures 6–9 illustrate some of the variation that was found.
Figure 6 shows the 1980 capacity factors for the three methods. The “Load” series was created by taking
the top system loads, the “LOLP” series by taking the hours for the maximum value of hourly LOLP, and
the “Weighted” series uses normalized LOLP as the weights for the capacity factors. The ELCC value of
31.3 was calculated using the reliability model and is the benchmark value used in the study. Figures 7, 8,
and 9 are constructed in the same way for the years 1982, 1984, and 1990, respectively.

Figure 6. Capacity factor for top hours, various methods, 1980

Points to the right of the 10% level of Figure 8 for all three methods appear to slightly underestimate the
capacity credit, as calculated by ELCC. The weighted approach appears to be more accurate at low-load
percentages, but all three methods provide similar capacity credit estimates as we approach the 30% load
level.

The results for 1982 are depicted in Figure 7 and are quite different. There is clear disagreement between
method 1 and methods 2 and 3. However, this result should come as no surprise. The ELCC measure is
based on system reliability, which is a function of both load level and available capacity. Utility
dispatchers will attempt to provide as much capacity as possible during system peak. Non-peak periods
may have higher LOLP values, and, thus, lower reliability, if lesser capacity is available. In Figure 7, there
is quite a close agreement between the two methods that take LOLP into account, and these methods
provide approximations that are very close to the ELCC value over a wide range of top load hours.
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Figure 7. Capacity factor for top hours, various methods, 1982

Figure 8 shows what can happen when wind generation during the utility’s extreme peak period is not
typical of the wind generation over lesser peak periods. Choosing hours to evaluate based solely on load
level severely underestimates the ELCC, although when a larger number of hours are included in the
calculation, this error quickly tails off. However, both of the LOLP-based methods substantially
overestimate the capacity credit. Method 2 converges much more quickly than does method 3. When the
top 30% of hours are used, all methods are quite close to the ELCC value.

Figure 8. Capacity factor for top hours, various methods, 1984
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Figure 9 is the final graph of this series. In this case, method 1 severely overestimates capacity credit when
a small number of hours are used, whereas methods 2 and 3 are consistently below the ELCC value. These
series do not converge very well, either to each other or to the ELCC value. Each of these methods
underestimates capacity credit for 1980.

Figure 9. Capacity factor for top hours, various methods, 1990

We can draw several conclusions from the results. First, although capacity factor might be useful as an
approximation to capacity credit, it appears to consistently underestimate the ELCC value. Second, the
accuracy of these capacity factor methods is very sensitive to both the number of hours used and the
method used to select the hours. Third, wind power plants contribute to overall system reliability during
non-peak hours.

Comparison of Methods
Although it is apparent that these capacity factor methods are not as accurate as ELCC methods for
calculating capacity credit, Milligan and Parsons performed some simple calculations to rank these
methods. For each of the 13 years of wind data and for each method, we calculated a root-mean-square
error (RMSE) statistic:

where n = the number of hours used in the approximation, xa is the actual capacity credit (as calculated
using the ELCC approach), and xf is the estimated capacity credit by method 1, 2, or 3. The RMSE was
only calculated on the results based on the 30% of load hours. Figure 10 represents a simple scoring of the
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results—how many years did each method produce the lowest RMSE—alongside the average RMSE over
the 13-year period. Although method 1 is tied with method 2 for the number of years with the lowest error,
its average RMSE exceeds that of method 2. In spite of delivering impressive performance in 1982,
method 3 has the highest composite error.

Figure 10. Overall comparison of methods

In our judgement, the Load method provides a reasonable trade-off between accuracy and effort, either
early in project assessment or if it is not possible to calculate the ELCC. In other situations, it might be
possible to obtain LOLP output from a reliability model, but not possible to perform multiple runs to
calculate ELCC.  Here, the LOLP method performs better with a modest effort. Although the weighted
method does not appear to perform well here, this is likely because of the lack of correlation between load
and wind, an artifact of the data sets available for this study. 

Summary

To fully measure the long-term capacity credit of an intermittent power plant, Milligan and Parsons
recommend using the standard ELCC measure and a full complement of reliability model runs. However,
there may be cases where this is impossible. If hourly LOLP values can be obtained from a reliability
model run but multiple model runs can’t be performed, they recommend using the LOLP method. If no
reliability measures are available, the Load method appears to provide a reasonable approximation. There
is clearly a trade-off between accuracy and effort. As the restructuring of the utility industry moves
forward, it will be important to continue to examine different calculation methods that can be easily
applied by various players in the industry.

So far, we have seen the relationship between wind forecasting, unit commitment, and operational capacity
credit. An accurate forecast can provide a benefit to the utility or generating company by allowing optimal,
least-cost-unit commitment. In the context of the restructured market, an accurate wind forecast can also be
useful to the wind plant operator because it helps specify the timing of wind capacity that can be contracted
for in a day-ahead market. With an accurate wind forecast, wind capacity can be sold in the market.
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Measuring capacity credit with ELCC is a relatively common approach. The Milligan and Parsons work
demonstrated the differences obtained when comparing capacity factor and capacity credit based on ELCC.
 However, none of the work we have seen so far has solved the problem inherent in both Elfin and P+: how
can we specify hourly wind power data and obtain an estimate of the wind plant reliability that is caused
by variation in wind speed? That question is addressed in the following section (NREL has developed a
probabilistic method for incorporating wind power plants into the system-reliability calculation. This will
be published in the near future).



21

Sequential Monte Carlo

Intermittence and the high variability of wind make it difficult for models to adequately measure capacity
credit. Capacity credit results depend heavily on what happens during the utility's peak hours. Because
wind speed can vary significantly from year to year and from hour to hour, capacity credit estimates that
are based on a single year (or less) of data and modeled without taking this variation into account may not
be credible.

Because of the temporal interactions between load, wind power, and conventional generating capacity,
wind plant capacity credit measures are often little more than random draws from a probability distribution
whose characteristics are largely unknown. To properly account for the large number of potential
interactions, some form of multiple-scenario or Monte Carlo simulation is necessary. An excellent
discussion of this technique in the context of chronological production cost models can be found in
Marnay and Strauss [17]. Milligan [12] illustrates a Monte Carlo method that is external to the load-
duration curve production cost model. This approach creates a set of many wind power series, each of
which can be run in the production cost or reliability model, and is similar to a technique proposed by
Billinton and Chen [15]. Milligan [18] applies this approach to the RAMP wind site, and compares the
capacity credit results obtained with the external Monte Carlo method with results using the actual wind-
speed data. Milligan and Graham [16] and [19] extend the basic framework, using the Elfin and P+
models, and introduce a reduction technique to help minimize the significant model run-time that is
required for the full simulation set.

This section summarizes these various modeling approaches and results. After a short discussion of the
external Monte Carlo method, we begin by illustrating the method and show how multiple wind-speed and
wind-power simulations compare with the 13-year RAMP data set, following Milligan [18]. The
discussion will then turn to applying the method to the two production-cost models, and finally, to the
reduction method proposed by Milligan and Graham.

Many production-simulation and reliability models have a Monte Carlo option that allows sampling from
the generators availability probability distributions. This approach is used when one would like a better
estimate of the range of possible outcomes than can be provided by the usual convolution approach.
Another advantage of the Monte Carlo method is that it provides estimates of various probability
distributions, such as system reliability and system costs. The P+ model also has a branching option, which
combines the more efficient convolution approach with the more precise Monte Carlo method. The
branching technique performs the usual convolution on all but one generator. This generator’s state will be
sampled repeatedly via Monte Carlo, holding all other generator values to the expected values from the
convolution. This allows the analyst to focus on the effects of a particular generator, without paying the
full price of heavy execution time that is exacted by full Monte Carlo.

This approach appears to be ideal for modeling wind power plants. Unfortunately, the Monte Carlo
simulation procedures generally sample from a very simple probability distribution that is not appropriate
for wind power plants. This leads us to consider separating the probabilistic sampling from the production-
cost model. The method involves repeatedly creating synthetic wind-speed data, which can easily be used
to calculate hourly wind power output. One can obtain a sequence of such data sets, and then run a series
of production model simulations, capturing the results of these runs and summarizing them in a convenient
form. The Monte Carlo is used to create the synthetic wind series, and the production-cost or reliability



22

model can be applied to each. This is sometimes called “sequential Monte Carlo,” to differentiate it from
the Monte Carlo logic that is often found in the models themselves.

This solves the problem that is inherent in the somewhat unappealing trade-off between maintaining hourly
wind power data and providing a probabilistic measure of the event that the wind power may vary from a
fixed value. However, the cost of this solution is increased complexity and model runtime.

A Markov Model for Wind-Speed Variations

In this section, we examine the Markov model, which captures the time-varying properties of wind-speed.
There are several variations of the Markov model. In other work, I have tested some of these methods, and
found that the choice of method should be based on the characteristics of the wind site [20]. Parsimony
suggests choosing the simplest model that performs adequately. Sites such as the HP site cannot be
modeled any more effectively with more advanced Markov models than with simpler ones.

A stochastic process is defined as a Markov chain if [21]:

(P(Xt+1 = j |  X0 = k0,, X1 = k1, …, Xt-1 = k t-1, X t= i )=P(X t+1=j | X t = i)) ∀ t = 0, 1, …  (6)

and all sequences i, j, k0, k1, . . ., kt-1. This definition says that the conditional probability of any event,
given any past event and the present state Xi = i, depends only on the present state of the process. In the
context of wind speed, this implies that the probability of any wind speed for hour t depends only on the
wind speed in hour t-1.

 Some wind regimes, among which are several sites in California, have strong diurnal components. Other
sites, such as the HP site, have wind that is driven primarily by the passage of frontal systems. In this latter
case, one would expect a very weak diurnal pattern, and the resulting Markov assumption can be written as
follows:

P(Xt+1 = j |  X t= i )=P(X 1=j | X 0 = i)) ∀ t = 0, 1, …     (7)

Equation (7) says that the probability distribution that describes transition from one state to the next is
independent of time. Such a process is called a stationary Markov process. We have tested both stationary
and non-stationary Markov processes.

Of particular interest is the obvious restriction that the Markov assumption places on the memory of the
process. Other methods, such as the auto-regressive integrated moving average (ARIMA) approach
originally put forward by Box and Jenkins [22], allow for generalizing the influence of past events on the
current event. The first-order autoregressive model, the AR(1), is a special case of a stationary Markov
model. The Box-Jenkins approach involves analyzing the data series and its autocorrelation function to
determine the order of the autoregressive process, which can be greater than 1 (see [15]). We tested a
second-order Markov process, which can be described as:

0,1,...=tm)=Xi,=X|j=XP(=i)=X,k=X,...,k=X,k=X|j=XP( 1-tt1+tt1-t1-t11001+t ∀  (8)
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This approach assumes that the probability of the state of the process depends on the previous two states.
This allows the model to implicitly take the trend in wind speed into effect, a feature that is missing in the
basic Markov model.

It is well known that seasonal variations in wind speed can be significant. For this work, Milligan and
Graham applied each method independently for each month of the year. Although the Gregorian calendar
is somewhat artificial with respect to meteorology, it does allow us to capture changes in wind speed that
are a function of the time of year.

Each of the Markov variant methods calculates a set of state-transition matrices. Each matrix is calculated
for a single month using all available wind-speed data. The state-transition matrix is a series of probability
distributions. One distribution is calculated for each integral wind-speed value (measured in meters per
second). Therefore, for each wind-speed value, we have the probabilities of changing to all possible wind-
speed states. After calculating the state-transition matrices, the simulated wind-speed series are constructed
by sampling from the appropriate probability distribution, drawing a random wind-speed value for each
hour.

Most of the work described here uses wind data from the Great Plains. The Markov model used in these
cases is the basic first-order, stationary process, and is selected based on an RMSE goodness-of-fit
criterion.

Figure 11 illustrates a state-transition matrix for July. During the simulation process, twelve such matrices
are created—one for each month of the year. The next step is to sample from the state transition matrix,
thereby creating an artificial wind-speed series based on the original series.

Figure 11. Peak month state transition matrix
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This process normally requires several wind-speed series. Based on work we have done at NREL, at least
1,000 series, in our judgement, will provide an adequate representation of wind-speed variation. Billinton,
Chen, and Ghajar report that, using an AR(2) Box Jenkins model, their model converges to a specified
tolerance in about 6,000 iterations. 

Capacity Credit Modeling with Elfin: Comparison of the Markov Model to Actual
Wind-Speed Data

Milligan [18] applied the Markov model to the 13-year RAMP data set. Using load and generator data
from Tri-State Generation and Transmission Association, Inc., I calculated energy output from a
hypothetical 100-MW wind power plant, and used this as input to Elfin. Figure 12 shows the annual
energy and ELCC, each based on the percentage of 1988, the year in which maximum energy and capacity
credit occurred. As can be seen from the graph, there is a high correlation between wind energy output and
ELCC; however, there are several times that these series move in opposite directions.

Figure 12. Capacity credit and energy for 13 years

Representative years are selected from the 13-year data set, on which a Markov simulator tool is applied.
This allows us to analyze plausible wind-speed variations and their effect on capacity credit. Based on the
actual data, 1980, 1986, and 1990 were selected to represent low-wind, average-wind, and high-wind
years.  Using these three years, separate state-transition matrices were calculated, and a set of 100
simulations was done using each one.
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Figure 13 shows the combined results. The first column in the graph shows the ELCC values based on the
actual wind data. The mean ELCC over the 13-year period is 39.1% of rated capacity, with maximum and
minimum values of 50.5% and 31.3%, respectively. The range of values (50.5–31.3) is 19.2, and the
coefficient of variation (COV) is 13.8%. As one might expect, the high-year simulations yielded a higher
maximum ELCC (52.5%) with a correspondingly higher mean (42.3%). However, the minimum is slightly
lower than the mean of the actual data (30.5%), and the COV is 8.6%, which is markedly lower than the
actual series COV. The mean-year simulation is a closer match to the actual year. The mean is slightly
higher, and the range is somewhat higher. However, the COV is only 10.1%, as compared to 13.8% for the
actual data. Results for the low-year simulation exhibit similar tendencies. The mean, maximum, and
minimum are lower than actual. This results in a higher range and a lower COV. These results suggest that
the Markov approach provides a reasonable look at how variation might have an impact on ELCC, but that
it generates a small number of more extreme events (with a higher range than in the actual data) while
underestimating overall variation (a lower COV as compared to the actual data).

Figure 13. Comparison between simulated and actual ELCC

The energy results can be seen in Figure 14. The energy variations that are simulated by the Markov
process clearly underestimate the natural variation found in the actual data set, as evidenced by markedly
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COV. Clearly, the Markov approach underestimates energy variations.
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Figure 14. Comparison between simulated and actual energy

Although not ideal, the Markov model and its integration into sequential Monte Carlo simulations provide
significant insight into expected variations that might arise because of annual wind-speed differences. As
more wind data becomes available in the public domain, additional research can provide better models and
validation. If only a single year of wind data is available for analyzing a particular project, an attempt could
be made to compare this data with other long-term data records to determine how the measured year
compares to a longer period. Once this has been established, the Markov method could be used to calculate
the estimated variations.

There are several caveats to this work. First, these results may not be robust to other wind sites. The data
used here does not have a significant diurnal component, as the wind is primarily caused by synoptic-scale
weather events. This data was obtained from an air-quality monitoring site that would not be used for a
wind power plant. It may also be the case that an even longer data set is necessary to adequately cover the
range of expected variation. Capacity credit, however measured, is sensitive to the correlation between the
utility load and wind resource and to the specific utility resource mix during peak and off-peak periods.
ELCC is also sensitive to the risk-target chosen by the utility management, and whether LOLE or ENS is
used as the reliability measure.

Capacity Credit Assessment Using Sequential Monte Carlo: P+ and Elfin

Milligan and Graham illustrate how the Markov-Sequential Monte Carlo technique can be applied to both
load duration curve (LDC) and chronological production-simulation/reliability models. Part of this work
focused on a reduction technique that selects among the many wind-speed and wind-power time-series that
are generated from the Sequential Monte Carlo method. To distinguish the reduction method, the
Enumerated Probabilistic Approach (EPA) denotes the full Sequential Monte Carlo method, whereas the
Reduced Enumerated Probabilistic Approach (REPA) designates the reduction technique. We used the
Elfin model to establish a base case of 1,000 EPA simulations, then used both Elfin and P+ to perform a
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set of REPA simulations using a subset of the 1000 simulations. The paper contains some selected
reliability and cost results, and compares the EPA and REPA methods.

The utility data used in this study is from Tri-State Generation and Transmission Association, Inc. To
provide a plausible analysis of wind plant reliability and ELCC, a Markov wind-speed simulation tool was
applied to a single year of wind data from the Nebraska Energy Office. We chose the Imperial, Nebraska,
site because of its proximity to Tri-State's service territory.

This analysis focuses on October 1995, a month in which there appears to be significant variability in the
wind resource. To satisfy both models’ requirement for 168-hour weeks, each model was run for six full
weeks before obtaining calendar summaries for October. Some weekly results are reported below. For this
month, Tri-State's peak load was 1,440 MW. To minimize differences between production models, we
reduced the load by 90 MW to account for a time-varying purchase from Basin. The net peak load was
1,350 MW. The maximum hydro purchase from WAPA was 400 MW, with 1,152 MW of base and
intermediate generation and 120 MW of peaking capacity. Milligan and Graham modeled a hypothetical
100-MW (nameplate) wind plant.

The wind-speed state transition matrix for October appears in Figure 15. This graph shows the probability
of occurrence of each wind speed at time t as a function of velocity at time t-1. Some utility control areas,
pools, or reliability regions estimate generating plant capability on a monthly basis, so the choice of time
frame is consistent with those approaches. The method could be appropriately applied to other time scales.
Once the multiple wind-speed realizations have been simulated, one can calculate the hourly wind power
output from a hypothetical wind plant for each realization. We then performed the analysis of all wind
speed realizations (EPA) or of the cases selected for the REPA analysis.

Figure 15. Wind-speed state transition matrix for October
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For the EPA runs, each hypothetical wind power realization is input to the Elfin model, which is executed
for each one. From this process, one can obtain the ELCC of each realization, which can then be
summarized for further analysis.

The REPA method is an attempt to reduce the number of reliability model executions with a minimal
reduction of accuracy. The approach is to group the 1,000 wind-power series based on energy output
during the utility system peak. The data are then grouped and assigned weights corresponding to the wind
energy frequency distribution. Representative wind-power realizations are then selected from each of the
groups, and the model is run once for each selected case. Weighted averages are then computed for the
outputs of interest. We performed this analysis with both the Elfin and P+ models.

We modeled wind power as a load modifier in Elfin and as a fixed hourly transaction in P+. This approach
causes each model to treat the wind power plant in the same way. The hourly load is reduced by the level
of wind generation in that hour and conventional resources are committed and dispatched accordingly.

The process of selecting the various wind realizations for the REPA involves some judgement. The intent
is to select the data bins in such a way that the variation of the binned data closely represents the variation
in the ungrouped data. In our judgement, grouping the data with five bin sizes corresponding to the mean
and � 1 and � 2 standard deviations resulted in a relatively poor representation of the variation found in the
ungrouped cases. Faced with a trade-off between execution time and accuracy, Milligan and Graham did
not want to use a large number of bins, since the saving in model runtime compared to the EPA method
would not be significant. However, 11 bins were used, each having a width of one-half the standard
deviation of wind energy produced during the utility’s peak. Basing the bin selection on all cases within
2.5 standard deviations of the mean energy allowed us to retain the variation in the full EPA data sets, but
with a significant reduction in the number of wind-speed realizations. Figure 16 illustrates the distribution
of the wind energy during the utility's peak period in October. The authors believe that the choice of bin
width and number did a good job of capturing the variation in the full EPA results.

Figure 16. Wind energy distribution for multiple data sets, October
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Figure 17 shows the bins and resulting weights that were selected for the analysis. This grouping retains
the shape of the original distribution, while adequately representing the variation in the data.

Figure 17. Wind energy distribution, binned by standard deviation

Capacity Credit Results

After making the adjustments to the load data as described above, both Elfin and P+ were executed to
obtain base-case results with no wind generation. Table 1 shows the reliability outputs from each model
using Expected Unserved Energy (EUE) and Loss-of-Load Hours (LOLH). It is clear from the table that
the EUE reliability measures are in closer agreement than the LOLH measures. On a percentage basis, the
EUE difference is about 4%, whereas the LOLH difference is about 5%. In our judgement, the EUE is
likely to be more accurately estimated than LOLH, as measured by the two models, and this is what is used
as the basis for the ELCC calculations.

Model Expected Unserved
Energy (GWh)

Loss-of-load
Hours

Elfin 6.6 46.1

P+ 6.9 43.9

We chose to maintain as realistic a depiction of the utility as possible, and therefore decided not to adjust
loads to an artificial reliability level such as 1 day in 10 years loss-of-load expectation, or the equivalent.
The ELCC values that were calculated are based on those calculated in the base cases illustrated in the
table.

To take full advantage of Monte Carlo simulations such as the EPA, one should be able to specify
convergence criteria and run the model until the specified target is reached. Because Elfin is a scenario-
based model with no intrinsic Monte Carlo capability, it was not possible to specify convergence criteria;
only the number of runs to perform. See Marnay and Strauss [17] for further discussion.
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Figure 18. Capacity credit distribution of EPA runs

For the 1,000 simulations of the EPA, Figure 18 illustrates the range of ELCC values as a percentage of
installed wind capacity. Although these results appear to be consistent with the annual results reported in
Milligan [18], here there is a larger variance of capacity credit because of the larger variation in wind plant
output over the month than would occur over a year. Each bin for the figure represents a width of s/2,
where s is the sample standard deviation. Our data indicates that all but about 2% of the values are within
two standard deviations of the mean.

From the 1,000 cases run for the EPA method, cases were identified that most closely matched the mean
ELCC, and the mean plus or minus s/2, s, 3s/2, 2s, 5s/2 of ELCC. This resulted in 11 of the wind-power
realizations from the full data set, which were used to perform the REPA analysis.

The results of the ELCC calculations are presented in Figure 19. As the figure indicates, there appears to
be a closer correlation between the unweighted ELCC from the REPA and EPA than between the weighted
REPA and EPA. The chronological model’s weighted REPA appears to do a better job than the LDC
model’s weighted REPA. The monthly capacity factor is also shown for comparison, and is virtually the
same as the full EPA ELCC value. The standard deviation of the EPA and REPA differ somewhat, as
shown in Table 2.

Statistic P+
REPA

Elfin
REPA

All 1,000 Cases:
Elfin EPA

Mean 33.4 31.9 34.7

Std. Dev. 11.8   9.9   7.4
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Figure 19. Capacity credit results from various methods

The table indicates that the representative cases overestimate the variation of the larger sample, as
indicated by the standard deviations. Conversely, the reduced-sample mean value appears to underestimate
that of the larger sample. Although our REPA process exhibits a higher standard deviation than the full
EPA runs, this still likely underestimates the monthly variation that could be expected from year to year.

Figure 20 shows the ELCC results for all of the REPA cases for both models. The case numbers in the
diagram indicate increasing wind energy levels that correspond to intervals chosen for the REPA analysis. 
Although one would generally expect that higher wind energy levels would result in higher ELCC
estimates, the graph shows that this is not entirely true. ELCC is a function of the generating system’s
reliability level, which is in turn a function of load and available capacity. As described in Milligan and
Parsons, higher wind energy levels during a specific period will not always increase the ELCC of the wind
plant. This can also be observed in Figure 21, which plots energy vs. ELCC of the wind plant. The upward
trend shows the positive correlation between higher energy and ELCC values, but there are cases in which
higher energy will not correspond to higher capacity credit. The diagram also shows a difference in the
capacity credit from the two models. This is likely caused by the difference in commitment algorithms used
by chronological and LDC models, as discussed in an earlier section of this paper.

0 
5 

10 
15 
20 
25 
30 
35 
40 

EL
C

C
 a

s 
%

 o
f I

ns
ta

lle
d 

W
in

d

EPA
REPA

Elfin WREPA
P+ WREPA

CapFac

Model/Method

34.3 31.9 31.5 32.9 34.1



32

Figure 20. Comparison of the REPA cases by model

Figure 21. Correlation between wind energy and ELCC

It is also important not to lose sight of the objective, which is to develop a computationally efficient way to
provide plausible estimates of wind plant output and variation in output. To that end, the REPA method
has accomplished that goal. Further work should be done to explore the impact of the utility’s peak period
and overall reliability level on these results.

Summary
The REPA appears to be a computationally efficient way to examine the impact of possible variations in
wind plant output. Instead of implementing or modifying a Monte Carlo routine that is embedded in a
production-cost or reliability model, the Milligan and Graham method provides the model with a small
number of wind power data sets. The model can then be run for each of the (reduced) enumerated series,
and the results analyzed appropriately for the study at hand. Further refinements can be made in a couple
of areas. First, the method of simulating wind data does not have to be Markov, but can consist of any
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appropriate method. Second, additional experimentation with bin selection could result in a reproducible
method that could be converted into a computer algorithm. In our judgement, the bin sizes and selected
ranges are reasonable. Although the REPA is not as accurate as the EPA, it does capture the variation in
the wind resource.

Modeling Production-Cost Variations with Sequential Monte Carlo

Although it is not part of a capacity-credit assessment, it is useful to view other results from the Sequential
Monte Carlo model runs. As a chronological model, P+ can produce hourly results for each day and week.
Figure 22 illustrates the weighted hourly change in generation for a 1-week period. This week was chosen
to illustrate some substantial variation in hourly wind power output. Other weekly model outputs are
similar. Using the REPA approach and bin selection process results in 11 similar graphs, one for each bin,
each representing various plausible scenarios. Generation planners and analysts then have a range of such
outputs on which to base their decisions. Figure 23 shows the reduction in conventional generation for a
typical day. The solid line shows the weighted average of the reduced data set, and the other lines show
selected results from two of the bins.

Figure 22. Generation reduction, week of October 9

-100 

-80 

-60 

-40 

-20 

0 

20 

M
W

 re
du

ct
io

n

1 24 48 72 96 120 144 168
Hour of Week

Base Peak



34

Figure 23. Generation reduction, October 9

Milligan and Graham [19] perform a similar analysis, but with only five bins (they prefer the larger number
of bins, but the use of five bins will help clarify these examples). Each bin width corresponds to the
standard deviation of the wind energy output from the EPA cases, and is therefore twice as wide as those
discussed in Milligan and Graham [19]. The reduction technique provides a very good summary of a wide
variety of model outputs, depending on the analyst’s interest. We have chosen to include graphs that show
daily and weekly results of the scenarios represented by each of the five bins. Figure 24 shows changes in
the base load and intermediate units in each scenario. Figure 25 summarizes this information, showing the
mean value for the five REPA cases. The weighted values are calculated with the probabilities associated
with each of the bins. The next two figures, 26 and 27, show similar information for the peaking units.
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Figure 24. Change in base and intermediate generation from no-wind case, REPA cases,
 October 14

Figure 25. Change in base and intermediate generation, mean REPA and weighted REPA cases,
October 14
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Figure 26. Change in peaking generation, REPA cases, October 14

Figure 27. Change in peaking generation, mean REPA and weighted REPA cases, October 14

Weekly results can also be shown so that one can obtain an idea of how the wind power variations
influence the generating system over a longer time period. As illustrations, the authors have chosen a graph
that shows the change in weekly generation, Figure 28. This diagram shows the differences between the
five representative cases and the weighted average results of the binned cases. Figure 29 shows a similar
range of reliability values based on EENS.
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Figure 28. Weekly change in base and intermediate generation for 5 REPA cases

Figure 29. Weekly change in EENS for 5 REPA cases
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Summary

Calculating the capacity credit of a wind-power plant can be a complicated process, requiring extensive
data and sophisticated models. The Milligan and Parsons results suggest that calculating wind plant
capacity factor for the top 10% of loads over the year can provide a reasonable estimate of ELCC, although
in some cases there may be a significant loss of accuracy. Even a more sophisticated method that calculates
ELCC may be suspect if there is significant inter-annual variation in wind-speed and timing through the
year. The Sequential Monte Carlo method provides a very powerful way to evaluate the risk that
intermittent resources impose on the generating system. As wind systems become more prevalent in the
emerging restructured utility industry, methods to help understand plausible variations of wind power
plants and their effects will prove important. The reduction technique does a very good job in screening a
few cases for further analysis, and reasonably represents the variation that is likely in wind power over the
year.
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Modeling Geographically Disperse Wind Power Plants

There are several wind plants in various stages of planning or development in the United States. Although
some of these are small-scale demonstration projects, significant wind capacity has been developed in
Minnesota, Wyoming and Iowa. As these and other projects are planned and developed, there is a need to
perform a value analysis of geographically diverse sites on the efficiency of the overall wind plant.

Milligan and Artig [23] use hourly wind-speed data from six geographically diverse sites collected by the
Minnesota Department of Public Service to provide some insight into the potential benefits of disperse
wind plant development. We provide hourly wind power from each site to an electric reliability simulation
model. This model uses generating plant characteristics of the generators within the state of Minnesota to
calculate various reliability indices. Because data on wholesale power transactions were not available,
these transactions are not included in the analysis. Although this work does not directly address the
capacity credit issue, it is based on maximizing reliability, which is the basis of the commonly used ELCC.
Therefore, the methods described here can be easily adapted to analyze the capacity credit of
geographically disperse wind power plants.

The Potential Benefit of Wind Power Plant Geographic Diversity

Wind can be described as a stochastic process. As such, the power output from a wind power plant can
vary substantially over time, and it is not controllable in the same way as conventional power plants.
During lulls in the wind, other resources must supply electricity. If geographically diverse wind sites can
be chosen in such a way as to minimize the number or extent of wind power lulls, this can be beneficial,
because conventional resource use can be reduced accordingly. The extent of this reduction will influence
the magnitude of fuel cost, O&M, and other costs to the utility. Of course the increase in wind power
generation also creates other costs, such as O&M.

One of the first comprehensive studies to address the geographical diversity of wind plants was done by
Kahn [24], who used California wind and utility data. He found that reliability does increase as a function
of geographic dispersal, but the geographic wind diversity and the barrier of large wind plant penetrations
relative to the conventional generator mix limit this increase. Kahn also points out that wind sites that are
un-correlated will generally provide better combined reliability than sites that are highly correlated, in
absolute value. However, Kahn’s analysis ignores the fact that two or more wind regimes with significantly
different time-scale properties can both provide the same correlation with utility load. A study by Brower
[25] found some benefits to distributed wind development in Minnesota, but the benefits were somewhat
constrained by the relatively high wind-speed correlation between wind sites.

State of Minnesota Data Collection Project

The wind resource data used in this study were collected through the Minnesota Department of Public
Service’s (DPS) wind resource assessment programs and the DPS/U.S. Department of Energy (DOE) Tall
Tower Wind Shear Study. The DPS has conducted wind resource assessment since the early 1980s,
providing utilities, developers, and other interested persons with wind data collected at sites around the
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state. Since the programs began, DPS has expanded and improved the data-collection process by adding
new monitoring sites and more sophisticated equipment. 

The monitoring sites that provided the data for this paper are equipped with cellular data loggers that
automatically send the collected information to a base station computer located in DPS offices. These sites
use existing communication towers and have monitoring levels at 30, 50, and 70 meters (m) above ground
level. Two anemometers are mounted at each level, one on each side of the tower. This configuration has
several advantages. It reduces the wind shadow effect the tower would have on the data if only one
anemometer were used at each level; it provides a degree of redundancy at each level so the failure of one
sensor does not eliminate the data collection at that level; and it provides the opportunity to do sensor-to-
sensor calibration and helps diagnose potential sensor problems. Each tower is also equipped with wind
vanes at the 30-m and 70-m levels. In addition to the internal logger temperature, some of the sites are
equipped with external temperature probes mounted approximately 4 m above ground level. 

In 1996, the DPS, in co-operation with DOE, installed four advanced monitoring sites as part of the
DPS/DOE Tall Tower Wind Shear Study. These sites use existing communication towers and have
monitoring levels at 10, 30, 40, 50, 60, and 70 m above ground. As with the sites described above, each
monitoring level has two anemometers, one mounted on each side of the tower. Each tower is also
equipped with wind directional sensors at the 10-, 30-, 60-, and 70-m levels. 

Wind Site Selection

Milligan and Artig chose six Minnesota wind sites to represent the diversity of climatology in the state.
The sites selected are Alberta, Becker City, Brewster, Crookston, Currie, and Luverne. They appear in
Figure 30, and are identified by the first two letters of the respective site name. One unique feature of the
Minnesota DPS data collection effort is that wind data is collected to a height of 70 m. This made it
possible to use the power curve of a modern utility-scale turbine at a hub-height of 65 m. A comparison of
output at different hub-heights appears in Table 3. The research used wind data for one year beginning in
November 1995.

Correlation to
Load

50m 60m 65m

Alberta -0.0135 .287 .320 .332

Becker -0.0436 .287 .311 .322

Brewster -0.0395 .333 .362 .374

Crookston -0.0035 .270 .297 .309

Currie -0.0539 .362 .388 .402

Luverne -0.0317 .320 .343 .358
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Figure 30. Minnesota wind sites

For many utilities, simply maximizing wind energy capture during the system peak will not necessarily
result in maximum benefit because the generating units’ ramp-rates and minimum-run levels may not allow
the wind power to be fully utilized if there is significant variation in the timing of wind power delivery to
the grid.  In addition, it is possible that the ability to accurately forecast hourly wind speeds and the
consequent hourly wind power output is somewhat impaired by wind sites with high hourly variability. For
these reasons, it may be to the utility’s advantage to install wind plants and select among sites in such a
way that hour-to-hour output variations between wind plants are reduced, while still obtaining as much
wind power output as possible during the peak period. A further benefit, not studied here, may be related
to the ability to improve forecast errors across multiple wind sites compared to forecast errors at a single
site.

Figures 31 and 32 illustrate some potential benefit from different sites. The graphs are based on real wind
data that was used to calculate the output of fictitious wind power plants, each with 100 MW of installed
capacity. The hourly wind power is calculated by taking actual wind-speed data and calculating power
output based on a utility-scale wind turbine, as described below. Figure 31 shows a 48-hour period for
three of the sites used in the study: Alberta, Currie, and Luverne. During the first day, the highest output
comes from the Currie site, and Alberta and Luverne show low power output. The second day, wind power
output at Currie is low, whereas power output at both Alberta and Luverne reach maximum rated output
(less losses). Power output at Luverne drops about 4–5 hours earlier than at Alberta late in the second day.
Figure 32 shows another view of multiple-site wind power output. This 24-hour period shows a general
correlation between sites, yet one can also detect time lags of 2–3 hours early and late in the day. These
variations are somewhat typical of the data used in this study and illustrate the potential benefit of
geographically diverse wind power plants.
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Figure 31. Wind power output over a 2-day period from multiple sites

Figure 32. Wind power output over a 1-day period from multiple sites
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Variations within a given wind plant are well known and provide some measure of diversity even within a
relatively small geographic area. The extent to which this intra-site variability would influence geographic
optimization is unclear. However, some of this intra-site variability is caused by local turbulence in what is
known as the turbulent scale of the relative spectral intensity of the wind-speed, and is described by Stull
[26]. For electrical reliability, we must be especially concerned with the synoptic scale variation, generally
less than one cycle per hour. This allows us to choose among several potential wind-plant sites so that
generator reliability is optimized over the year, or other relevant time period.

Modeling

Electrical reliability is a function of customer demand and the various generator characteristics. Utilities
experience a pronounced peak period, often several hours of the day during a particular season. A utility
can sometimes dramatically increase its generator reliability by installing peaking units to generate power
when it is most needed: during the peak hours. Even though these peaking units might be available at
night, their availability at night would likely have a negligible effect on system reliability. Likewise, as we
have already seen, a wind plant that delivers a significantly higher annual energy output does not
necessarily contribute significantly to system reliability. What is needed is for the wind output to occur at
times of otherwise high-risk periods during system peak.

Kahn’s discussion centers on the statistical correlation between the various wind-plant sites. Sites with
high positive correlation will provide higher output during the same time periods, whereas sites with high
negative correlation will be complementary. When the first site is providing a high level of electrical
output to the grid, the second site will likely be idle. Conversely, when the first site is not producing
electricity, it is likely that the second site is.

Figure 33 shows a normalized load duration curve for the state of Minnesota, which is part of the input to
the Elfin model.

Figure 33. Minnesota annual load-duration curve
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The precise form of the optimal wind-plant reliability problem may vary according to the customer loads,
wind sites, and characteristics of the utility system. For example, a combination of wind regimes that all
exhibit diurnal variation may provide the utility with an opportunity to select a combination of sites that
together have a high probability of offsetting system peak requirements. Such a scenario might involve
calculating various probability levels of wind generation during several peak hours every day during the
peak month(s). Alternatively, when the wind resources do not follow a pronounced diurnal pattern, the
utility might be more interested in looking at the overall probability levels of wind generation during the
month, without necessarily allowing for a repetitive daily pattern in wind generation.

Choosing the best combination of wind sites can be done with a number of objective functions, depending
on what the decision-makers believe is most relevant. Among these are (1) least-cost combinations of wind
sites, (2) wind sites that minimize load swings during system peak, or (3) most reliable wind sites. The
goals of least-cost production and most-reliable production are usually not consistent with each other.
Reliability must be traded off against cost because a perfectly reliable system (if one were to exist) would
not be cost-effective. Likewise, a least-cost solution might result in a generating system that does not
possess sufficient reliability. However, if plausible estimates of outage costs are available, one could
perform an optimization using the standard generation expansion options available in the model. For this
analysis, Milligan and Artig pursued an optimization based on reliability. Their method can be easily
extended to capacity credit or other parameters of interest. (Milligan and Factor [27] applied an extension
of this procedure utilizing both a reliability and economic benefit optimization).

Marginal Reliability Method
The first method is based on traditional marginal analysis. Although this approach is widely used in
economics, it is difficult to apply to the problem at hand. The difficulty is that the marginal reliability of a
wind plant is potentially different in each hour of the year, depending on customer load and other
generating resource availability. For example, we could calculate the reliability of wind power plants at
Brewster and Currie. If Brewster appears to be the best choice based on its marginal reliability, we can add
100 MW. However, now that we have 100 MW at Brewster, the marginal reliability of Currie will be very
different than during the original comparison with Brewster. Milligan and Artig used this method, and
compare the results to those of the preferred methods, below.

Without specific price information on wind development and production at these sites, Milligan and Artig
assume that the installed cost in $/kW or $/MW is the same at all sites. However, there is a difference in
efficiency and reliability between sites because of the different winds experienced at each of the six
different locations. The reliability level can be described as a function of installed MW at each site:

where ci = reliable capacity, as measured as a function of 1/r, r is the reliability measure of choice: either
LOLE or ENS, xi is the rated installed power capacity of the wind plant, i is the subscript of the wind plant
location, and 1 ≤ i ≤ 6. Finding the optimal mix of resources, assuming the same price/kW at each site,
implies that the quantity of wind resources is deployed up to the point at which the marginal products of
each site are equivalent (see Varian [28]).  Written in terms of partial derivatives we have

     i and j such that 1 ≤ i, j ≤ 6.

)x(=c iii Φ (9)

x)/x(=x)/x( jjjiii ∂Φ∂∂Φ∂  (10)

œ
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Figures 34 and 35 show the reliability curves for two sites, selected to illustrate variations in reliability.
The y-axis shows reliability, as measured by the marginal energy reliability index, which is the marginal
ENS, scaled to the interval (0,1) for convenience. From the diagrams, it is clear that Brewster is the more
desirable site based on its marginal reliability. Becker was not chosen by this (or any other) algorithm.

Figure 34. Marginal reliability curve for Becker

Figure 35. Marginal reliability curve for Brewster
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For each of the six wind sites, a series of model runs were executed with Elfin, adding 25 MW at a time
from each site until the maximum of 500 MW was “built” at each site. The authors then chose the
combination of sites that satisfied equation (10), using the marginal ENS as the reliability measure, given
the constraint of 500 MW of total installed wind capacity. The optimal choice from this method is 75 MW
at Alberta, 150 MW at Brewster, 125 MW at Currie, and 150 MW at Luverne. The algorithm did not select
either the Becker or Crookston sites because the associated reliability curves are much lower than those of
the four selected sites.

Optimization with Elfin
This approach uses the production-simulation/reliability model in such a way as to do a step-wise
modification of the net remaining load after each incremental wind plant is built. This method could
perhaps be best understood by referring to Figure 36. There are two possible variations of this approach.
The first uses LOLE as the optimization parameter; the second variation uses ENS. The step in the diagram
that illustrates the choice of site with the best reliability parameter instructs us to choose the wind site with
the lowest parameter, either LOLE or ENS, because higher values of LOLE and ENS represent less
reliable systems. The step entitled “Build an X MW wind plant” implies that the incremental plant size to
simulate building can be varied. In our case, X = 25 MW was chosen as a reasonable trade-off between
accuracy and model run-time. Smaller values of X might be more accurate, although given the relative
scale of X to the hourly loads, that is unlikely. Large values of X compromise the results because the
optimization algorithm is restricted to large increments of wind capacity, possibly overshooting a better
mix of sites.

Do until desired wind capacity is built
• Calculate reliability parameter for X MW at

each wind site
• Choose wind site with best reliability and

“build” an X MW wind plant at this site
Figure 36. Optimization algorithm

The optimization process proceeds as follows. This discussion focuses on using ENS as the reliability
parameter, but the process is the same when LOLE is used as the optimization parameter. First, Elfin is run
without any wind plants. The next step is to run Elfin for a block of 25 MW of installed wind capacity at
each site, separately. The ENS calculation from each site is compared, and the site with the lowest ENS
(best reliability) is selected. The process then simulates the building of 25 MW of wind capacity at the
chosen site, and this becomes the new base case. The process is repeated, running Elfin for each site
combined with the chosen site from the previous step. Twenty-five MW is chosen from the site with the
best ENS, and the process is repeated until all 500 MW of wind has been installed. The algorithm then
simply counts the number of 25-MW increments of wind plants added at each of the sites, and that is the
result.



47

The LOLE optimization selects 250 MW at Brewster, 225 MW at Currie, and 25 MW at Luverne. The
ENS optimization selects 450 MW at Brewster, 25 MW at Currie, and 25 MW at Luverne. The results
from this set of optimizations appear in Table 4. However, these results do not tell the whole story. When
we examined the selection part of the optimization, they found that there were often extremely small
differences in either LOLE or ENS between the chosen site and the second or third runner-up. This issue is
discussed further in the next section.

Alberta Becker Brewster Crookston Currie Luverne

MW Built by ENS
Optimisation

0 0 450 0 25 25

MW Built by LOLE
Optimisation

0 0 250 0 225 25

Inter-Annual Variations and Uncertainty
The wind-speed data used for this study were collected by anemometers mounted on a single tower at each
of the six sites that were analyzed. Using a power-curve for a modern wind turbine, hypothetical power
output was calculated, after accounting for wake effects and mechanical and electrical losses. If 25-MW
clusters of wind turbines were built on any of these sites, however, each turbine would respond to
somewhat different winds, depending on the terrain and micro-scale meteorological events. Therefore, we
are forced to accept the proposition that each time-series of wind speeds represents one of many possible
series. Although it is possible that each of these meteorological towers has been placed in a
“representatives” location for the overall site, we have no assurances that this is indeed the case. This
implies that the precise calculations from our models are based on somewhat imprecise data.

In previous work, we have also been somewhat skeptical of modeling that does not explicitly take inter-
annual wind speed variations into account. Because of data constraints, Milligan and Artig were not able to
perform a full analysis of the underlying time-series properties from multiple years of data at each wind
site, although that would be our preferred approach (although in a later work [29] we were able to use
several years of data). This would allow the use of sequential Monte Carlo runs with Elfin, resulting in
probability distributions of the reliability measures for each wind plant and combination of plants. Such an
analysis would allow for the explicit accounting of the underlying probability distributions, so as to help
the decision-maker assess the impact of these variations. In the absence of a more detailed analysis,
Milligan and Artig applied a technique borrowed from fuzzy logic (such as Monteiro and Miranda, [30]
and Pereira [31]) to this problem. Using fuzzy logic allows the modeling to incorporate the uncertainty
associated with the issues discussed above. Milligan and Artig hypothesized that the LOLE and ENS
measures obtained from the Elfin optimization are fuzzy values, with variations ranging up to ± 0.5% of
the calculated value. The choice of this value range is based on the partial results of the optimization runs.
As we examined the reliability values of the best site compared to the runners-up, there appeared to be a
clustering of reliability values very close to the optimal values, whereas the least optimal plants’ reliability
values were significantly worse. In our judgement, the choice of 0.5% was a reasonable one, based on the
data. Without specific probability distributions, we hypothesize that the reliability measures are distributed
uniformly on this interval, which is similar to other approaches using fuzzy analysis. The selection decision
portion of the optimization algorithm was modified to select not only the best single site, but any site
whose optimization parameter is within some small distance of the best choice. Since there is no a priori
knowledge of which fuzzy value is best, the analysis used step-wise increments from 0.0% up to 0.5% of
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the differences in the reliability measure and averaged the cases. This amounts to choosing a 25-MW block
of installed wind capacity whenever

where cp is the reliable capacity of the best site, ε is the fuzzy parameter expressed as a decimal, and ci
represents the capacity of plant i, 1 ≤ i, p ≤  6, and p ≠  i. The results of this approach appear in Table 5.

Alberta Becker Brewster Crookston Currie Luverne

MW Built by Fuzzy ENS
Optimisation

38 0 215 0 120 127

MW Built by Fuzzy LOLE
Optimisation

65 0 155 0 173 108

The preferred method is the fuzzy ENS approach because ENS represents the area under the load
probability distribution, whereas LOLE represents the height of the tail. Depending on relative costs of
purchasing on-peak capacity and energy, a utility could use whichever method is most appropriate.

Comparison of Results

A summary of results appears in Figure 37. Each bar in the diagram represents a single method. The first
three methods provide similar results: the best combination of sites excludes Becker and Crookston. In
each of these cases, the lowest recommended capacity is at Alberta. Brewster and Currie are both
recommended in the range of 125 MW to about 200 MW, and Luverne’s share ranges from about 100 MW
to about 150 MW. The right side of the graph shows how unstable the results can be when a deterministic
approach is used. A small amount of capacity at Luverne is chosen in both cases, but there is clearly a very
large difference in the capacity recommendations for Brewster and Currie. This disparity is caused by the
extremely close reliability values that were often found among the runners-up. In this case, Brewster and
Currie were very close in both the LOLE and ENS reliability measures, so small differences between these
measures altered the relative ranking of the sites. This is one reason for applying a method that recognizes
the role of uncertainty in the modeling. The method of choice is the fuzzy ENS approach because ENS
typically provides a more robust measure of reliability, in general, than does LOLE, and is therefore more
likely to be stable over short variations in load and generator parameters.

)+(1cc)-(1c pip εε ≤≤  (11)
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Figure 37. Comparison of methods

Summary

Electricity production simulation and reliability models can be applied to the problem of selecting among
competing sites for wind generators. However, using these models must be tempered with some
judgement.  The wind sites analyzed by Milligan and Artig exhibit some overall correlation, but also
provide some benefit to the overall system reliability because of time lags in hourly generation. We believe
that the fuzzy ENS analysis provides the best way to analyze such problems.

Several additional factors could be introduced into future studies. First, given additional intra-site data, the
results would be more accurate. Second, these results are sensitive to the specific load and generator
characteristics used by the model. Additional data on wholesale power transactions from the state of
Minnesota would improve the accuracy of these results. Constraints in the transmission system and power
flow have not been considered here, but it would be important to analyze these factors before embarking
on the installation of a large, geographically diverse wind power system.
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Conclusions

The conclusions we can draw from this paper can be divided into two areas: modeling results and
modeling methods.

Modeling Results

This paper describes modeling results for several utilities, wind sites, and wind turbines. In many cases,
both an LDC model and a chronological model were used; in other cases, only an LDC model was applied.
The first general observation is that, in all cases, modeled wind power plants have economic value—both
energy benefits and capacity benefits were found to be significant. Wind power plants are factored into the
dispatch mix by a simple, rational strategy: if there is wind capacity online, it is used. Although it may
seem as though the wind power plant is a base-load unit, it will not displace base-load generation. Instead,
high-dispatch-cost units that are on the margin are displaced by wind power.

The energy value of wind power plants is highly dependent on the utility, wind turbine performance
characteristics, and wind site. Because the wind power displaces power generated by marginal units, the
value of power displaced will vary throughout the day. During low-load periods, a marginal generator
typically has a lower fuel cost than during the system peak. Therefore, the timing of the wind power has an
important influence on the value of energy that is displaced. Wind sites that are highly correlated with load
will have a higher energy displacement value because higher-cost energy is displaced during the peak
period.

The capacity value can be calculated in the same way for a wind power plant as for a conventional
generator. Although only two NERC regions explicitly deal with wind capacity accreditation, results from
both methods show a capacity value that varies throughout the year. Wind forecasts can also have an
important influence on operational capacity value of wind plants, because accurate forecasts help
schedulers to commit slow-start units in an optimal fashion, making full use of the availability and timing
of the wind power.

Using a reliability-based measure of capacity credit, the ELCC, it is apparent that wind plants have a
capacity credit that varies with the characteristics of the wind site and utility characteristics. In all cases
examined in this report, wind had significant capacity credit value, although this value is a percentage of
the wind plant nameplate capacity. What is the implication about installing backup capacity for wind
power plants? In our judgement, the answer is the same as for conventional power plants. A conventional
power plant may be on forced outage during a system peak. Although this event normally has a low
probability of occurrence, the unit might not be able to contribute capacity during system peak. However,
the capacity rating for the plant will not normally be zero. We can use a measure such as ELCC as the
capacity value of the plant, so as to incorporate the expected forced outage probability into the capacity
rating. Should the plant be on outage during the peak, the shortfall would be made up from system
spinning reserve, quick-start units, spot purchases, or by other available units that can be committed in
time to cover the peak. Historically, reserves have been provided on a system-wide basis, not on the basis
 of an individual power plant. The relative burden that each power plant puts on the reserve requirement is
a function of the plant capacity and its availability rate.
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To maximize the reliability contribution of wind capacity to the generating system, our results suggest that
development occur at several sites rather than at a single site. The analysis does not consider the effects on
the transmission system or the possibility of reducing wind forecast errors of geographically disperse
development. If a single large wind site were to be developed, it would likely require a dedicated
transmission line that would have a load factor approximately equal to that of the wind power plant. A line
outage would result in the loss of all wind generation. Conversely, with multiple wind sites, it may be
possible to use existing transmission, attaining a higher line-load factor if the line can be used for other
purposes. A line outage would not necessarily result in the loss of all wind capacity.

Modeling Issues

It is apparent that chronological models provide a more detailed, accurate look at generation costs than do
LDC. Having said that, LDC models, as represented by Elfin, remain very powerful tools. Overall cost
estimates between these two models were very close. It is likely that data quality and availability, along
with other modeling assumptions, play a more important role in accurate modeling than does the style of
the model. LDC models are not capable of performing daily analyses, which are important as we move
from planning issues to operational issues.

Another issue that affects accuracy is whether the model uses a piecewise representation of the load curve
or a cumulant method. This poses a trade-off between accuracy and execution speed. Accuracy losses are
more apparent with systems that have a high reliability because it is more difficult to represent the tail of
the probability distribution, as the probability of loss-of-load becomes very small.

Computing ELCC can be somewhat time consuming and requires a significant level of modeling and data
requirements. In the absence of these, calculating wind plant capacity factor over the top 10% of load
hours can often provide a reasonable first-cut estimate of capacity credit. Although this method may not
always perform accurately, it is much easier to apply than a set of production-cost/reliability model runs.

Using a single year of wind data to estimate capacity or energy value is somewhat risky because of possible
inter-annual variation in the wind resource. Using Sequential Monte Carlo, it is possible to calculate
measures of dispersion, such as the standard deviation, of capacity and energy benefits. It also might be
possible to correlate wind site data with data at a nearby site that has a longer-term record. Sequential
Monte Carlo can also be used to provide probability distributions for any model output of interest, such as
total cost, cost of specific generators, and so on. Simulated data is certainly not a substitute for real data.
As more multi-year wind data sets become available, analyses can incorporate the data instead of
simulating it.

A technique of sampling from multiple wind realizations can help reduce model run-time. Although the
REPA process does a reasonable job of capturing the variation in wind capacity credit, other sampling
methods might do a better job of representing the ELCC distribution and the full variation of wind energy
output found in the actual data set. In my judgement, reduction techniques hold great promise for
providing significant information while limiting model runtime requirements. For example, it may be
possible to model ELCC as a function of various parameters using some form of regression or time-series
modeling. The REPA sampling would then have more guidance as to which series would best represent the
ELCC variation. Of course, this could be applied to other model outputs as well.
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When multiple wind sites are available for development, the optimal mix of these sites can be calculated
according to a number of objective functions. If capacity and energy outage costs are known or can be
estimated, generation-expansion model runs that use a dynamic programming procedure might be useful.
In the absence of these costs, an iterative method based on fuzzy ENS can be used to calculate which sites
should receive development. The procedure outlined here has considerable flexibility, so it can be adapted
to specific applications as appropriate. This flexibility makes it possible to analyze competing objectives,
such as minimum generator cost vs. maximum reliability. Decision-makers can then choose to combine the
results in an attempt to meet both objectives.

Because wind is an intermittent resource, modeling approaches based on probabilistic and fuzzy set theory
are powerful ways to analyze possible outcome ranges. These approaches have been applied to various
wind analysis projects in Europe and North America. Power systems analysts are becoming more adept at
quantifying risks—risk of generator failure, transmission failure, fuel cost variations, and others. Another
form of risk that is introduced by wind power plants is the risk of no wind power output. As we have seen
in this paper, there are ways of incorporating these risks into the analysis. As the use of wind power plants
increases throughout the world, techniques for addressing these issues will undoubtedly increase in
sophistication. Although the restructuring landscape is still undergoing change, increased competition
among electricity suppliers will increase the demand for modeling tools and approaches that can help
assess risks, reliability, and intermittence.

Assessing the Modeling Frameworks

It is not the intent of this report to weigh the costs and benefits of the two models, but rather to comment
on the state of wind-power plant modeling as represented by the two models used for this research. Both
P+ and Elfin allow the analyst to perform detailed analysis of wind power plants in an excellent modeling
framework. Although the chronological framework can answer more detailed questions about optimal
generation with wind power plants, both models suffer from the same weakness—the ability to
simultaneously consider hourly variations in wind power with a probability other than certainty. Simple
approaches, such as using the standard deviation of wind power during the period with an appropriate
probability distribution, would help.  On the other hand, sequential Monte Carlo, although computationally
expensive, can provide a detailed look at variations, and can be weighted according to probability
distributions derived from the simulated series, as performed by the REPA analysis above. Although
REPA certainly has room for improvement, the approach is sound, and provides a view of probabilistically
weighted outcomes and various representative cases. One of the appeals of Sequential Monte Carlo and
REPA is the flexibility to use the method with any model.
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Future Research

As we move towards a time that will likely feature a restructured electricity market and vastly improved
wind generating technology compared to the past, fundamental questions about the operational impacts of
wind power plants on the power system need to be fully answered in the public domain. Does a large wind
plant increase or decrease the high-resolution variation in net load (after accounting for wind power)?
What are the effects on unit ramping? If these effects are significant, what mitigation techniques can be
applied? How much short-term smoothing occurs as the number of wind turbines within the wind plant
increases? Can control strategies for single variable-speed machines be adapted for larger clusters of
turbines, minimizing losses and short-term fluctuations? How is the system reliability affected by the
penetration rate of geographically disperse wind plants? And how much more penetration can we get with
additional disperse sites?
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